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Part I

ELLIPTIC AND
PARABOLIC PARTIAL
DIFFERENTIAL
EQUATIONS IN
NUMERICAL GRID
GENERATION

1 INTRODUCTION

The primary objective of this study is to explore the feasibility of using

parabolic partial differential equation techniques for numerical grid genera-

tion for two-dimensional aerodynamic configurations. The contents include

a discussion of grid generation concepts and schemes in the literature, iter-

ative methods for numerical grid generation and two differential grid gen-

eration schemes: (1) an elliptic, and (2) a parabolic scheme. A detailed

mathematical and numerical representation of both schemes is given. The

main purpose in the treatment of the elliptic scheme is to introduce the

necessary transformations to provide equations that will establish the par-

ticular parabolic scheme development.

The grid generation scheme is derived from a pair of model parabolic
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equations in which the coefficients are determined by use of a related set

of two- dimensional elliptic partial differential equations. Coefficients that

have effects similar to the exponential forcing functions for grid spacing

control in elliptic grid generation are determined. This formulation involves

discretization of the governing equations on a quasi-uniform grid in the

computational plane and using linear interpolation between the current

grid line and outer boundary.

The basic idea in grid generation by use of parabolic PDE's is to specify

the body surface as an "initial" boundary, and treat the outer boundary

- as a constraint. Then coordinate lines are generated by marching outward

from the body surface.

. The parabolic grid generation method is extended to multicomponent

rN airfoils, arbitrary multiple bodies and cascade grid generation for the first

time. We present representative results as a measure of the efficiency of the

parabolic scheme.

2 GRID GENERATION

Numerical grid generation has become an integral part of computational

fluid dynamics (CFD) and is one of the most important topics in the de-

* velopment of flow solutions in complex flow domains. The grid here is

understood to be an organized set of points formed by the intersections

of the coordinate lines of a numerically generated boundary-conforming

curvilinear coordinate system having the same dimensionality as the phys-

V ical region. The main feature of such a system is that some coordinate

line (surface in three dimensions) is coincident with each segment of the

physical boundary. There are basically two decision stages involved in the
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Part I
ELLIPTIC AND

PARABOLIC PARTIAL
DIFFERENTIAL
EQUATIONS IN
NUMERICAL GRID
GENERATION

1 INTRODUCTION

-,,The primary objective of this ";udy is to explore the feasibility of using

parabolic partial differential equation techniques for numerical grid genera-

*tion for two-dimensional aerodynamic configurations. The contents include

a discussion of grid generation concepts ad schemes in the literature, iter-

ative methods for numerical grid generation and two differential grid gen-

eration schemes: (1) an elliptic, and (2) a parabolic scheme. A detailed

mathematical and numerical representation of both schemes is given. The
main purpose in the treatment of the elliptic scheme is to introduce the

necessary transformations to provide equations that will establish the par-

• ticular parabolic scheme development. ,

The grid generation scheme is derived from a pair of model parabolic

n p
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equations in which the coefficients are determined by use of a related set

of two- dimensional elliptic partial differential equations. Coefficients that

have effects similar to the exponential forcing functions for grid spacing

control in elliptic grid generation are determined. This formulation involves

discretization of the governing equations on a quasi-uniform grid in the

computational plane and using linear interpolation between the current

grid line and outer boundary.

The basic idea in grid generation by use of parabolic PDE's is to specify

the body surface as an "initial" boundary, and treat the outer boundary

as a constraint. Then coordinatt lines are generated by marching outward

* from the body surface.

The parabolic grid generation method is extended to multicomponent

airfoils, arbitrary multiple bodies and cascade grid generation for the first

time. We present representative results as a measure of the efficiency of the

parabolic scheme.

2 GRID GENERATION

Numerical grid generation has become an integral part of computational

fluid dynamics (CFD) and is one of the most important topics in the de-

velopment of flow solutions in complex flow domains. The grid here is

* understood to be an organized set of points formed by the intersections

of the coordinate lines of a numerically generated boundary-conforming

curvilinear coordinate system having the same dimensionality as the phys-

*: ical region. The main feature of such a system is that some coordinate

line (surface in three dimensions) is coincident with each segment of the

physical boundary. There are basically two decision stages involved in the

_6,
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discretization of a flow field. The first involves a decision about the grid-

generation concept to be used, and the second involves a decision about the

grid generation scheme to be employed. Several grid-generation concepts

and schemes are summarized in fig 1. 0

Most discretization methods can be classified as based upon one or more

of the concepts in fig. 1. These include single-module, multi-block, interfer-

ing, component-adaptive overlapping, and component adaptive interfacing

approaches. Probably the easiest and most popular concept is the single

module, in which the discretized flow domain is transformed into a single

computational rectangle (in 2-D) or cube (in 3-D).

* The multi-block approach corresponds to linking together several su-

ch blocks. Two methods are discussed by Rubbert and Lee [1]. The first

method is to generate the grid separately within rectangular subdomains

(blocks). Some of the block boundary surfaces no longer correspond to

boundary surfaces of the original problem, but instead separate adjacent

blocks. These are called field boundaries. Solution of the grid genera-

tion equations requires grid boundary conditions on these field boundaries.

Grids generated in this manner are termed "patched grids" or "patched

coordinate systems". The second method is to solve the grid generation

equations in the entire block- structured domain as a single grid genera-

tion problem. In this case grids will be analytical across field faces, but

solution of the problem is more complex. Grids generated in this manner

are called "directly solved multi- block grids". An example of an effective

multi-block approach is given by Thomas [21 for discretizing a wing fuselage

* configuration. 0

Once the desired grid-generation concept has been determined for a

given flow problem, the next step is to determine the actual location of
t "-0

lJ0

4
. , -. . .. .



4

the grid points. To do this, a variety of grid generation schemes are avail-

able. Basically, the grid-generation schemes for curvilinear grids are of two

general types (fig. 2) :

1. construction by algebraic interpolation

2. numerical solution of partial differential equations

In the latter, partial differential equation systems of elliptic, parabolic or

hyperbolic type may be used. Elliptic systems may be used to generate both

S- conformal and quasiconformal mappings, the former being orthogonal. In

this study, emphasis is on differential grid-generation schemes. However,

* for completeness we first describe algebraic methods. 6

2.1 ALGEBRAIC METHODS

The primary advantages of algebraic grid generation methods are that they

allow explicit control of the physical grid shape and spacing and are inex-

pensive. The fundamental idea on which most algebraic methods are based

is the use of mathematical interpolation functions to interpolate between

some known (or pre-assigned) grid points (usually on the boundaries), in or-

der to generate the grid in between these points. The interpolation method

or technique may vary with different algebraic methods, but the essential

idea remains the same. The points between which the interpolation is car-

ried out need not be boundary points; they can be any specified points in

the interior of the grid, through which we desire that the grid lines pass.

The interpolation functions contain coefficients which are determined so

that the functional values match the coordinate values at these specified 6

points. The most difficult aspect of algebraic grid generation is the deter-

mination of functions which control a grid.

.

* _.



For unidirectional interpolation (interpolation in one coordinate direc-

tion alone) the interpolation methods commonly used are polynomial inter-

polation and spline fitting. In polynomial interpolation a single polynomial

function is used, to match the coordinate values at all the specified points

(e.g., Langrange interpolation). In some polynomial interpolation meth-

ods it is also possible to specify the slope of the function at any or all of

the specified grid points (e.g., Hermite interpolation). The disadvantage

of polynomial interpolation is that, as the number of specified quantities

(i.e., points and/or slope at these points) increase, the order of the poly-

nomial increases. This may lead to undesirable oscillations in the behavior

*" of the polynomial in between the specified grid points. This problem can

be avoided if spline fitting is used instead of polynomials. In spline fitting,

instead of using a single polynomial for all the points, low order piecewise

polynomials are used to interpolate the specified grid points. Slope con-

tinuity is enforced at each point so that smooth grid lines are obtained.

The advantage of using splines is that grid lines can be generated relatively

easily and oscillation of the grid lines is reduced. An effective procedure

based on the description of two exterior boundaries and the application of

either linear or Hermite cubic polynomial interpolation to compute the in-

terior grid is given in Smith [3]. For cubic interpolation surface derivatives

combined with magnitude coefficients control the orthogonality of the grid

at and near the boundaries.

For example, non-polynomial interpolation functions are sometimes used

when the variation in spacing between the specified grid points is large.

The functions commonly used for this are the exponential functions and 0

the hyperbolic sine and tangent functions. In the multisurface method, de-

veloped by Eiseman [4], interpolation is carried out between an inner and

S"
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outer boundary, with a series of control surfaces in between. This involves

the use of field vectors tangent to the coordinate curve passing across these

surfaces. The most common form is transfinite interpolation, which is es-

sentially an interpolation between curves or surfaces rather than points.

It is called "transfinite" because it matches coordinate values on an entire

curve or surface. For example, Erikson [5] applies transfinite interpolation

for three -dimensional grid generation about wing - body configurations.

Some examples for airfoils and cascade configurations are given by Gordon

and Thiel [6] and Eiseman [4, 7].

2.2 CONFORMAL MAPPING METHODS

In conformal mapping methods analytic functions are used for transforming

the physical domain into intermediate domains wherein the grid generation

problem is simpler, and subsequently for remapping the grid into the phys-

ical or computational domain. These methods usually lead to reasonable

forms for the transformed partial differential equations. In addition they

can be used for generating orthogonal grids. A disadvantage of conformal

methods is that they provide little control over the grid point distribution

for general domains.

The general procedure for grid generation using conformal methods con-

sists of two steps. The first step consists of determining an appropriate

mapping, or sequence of mappings, that would transform a given physical

domain into a simple region. The second step consists of generating the

orthogonal grid in the computational domain. This grid is then remapped

6l to obtain an orthogonal grid in the physical domain.

Contours such as single airfoils are generally mapped to "near-circles" by

one or more simple transformations, and then the "near-circle" is mapped

I A I
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to a circle by a series transformation, (i.e., the Theodorsen procedure (Akai

and Mueller [8])). It is necessary for convergence that "the near-circle" be

sufficiently close to circular. Also, there are some very interesting ideas

for grid generation about multi-component airfoils - Halsey [9,10] discusses

three methods. The first method treats multicomponent airfoils by a se-

quence of transformations which map each airfoil to a circle in succession,

while maintaining previously established circles. The second approach in-

volves mapping each airfoil to a circle with no special consideration o;

the others. This process generally requires only a few iterations to con-

verge. The third approach involves connecting all of the bodies in a string

* and mapping the resulting (effective) single body. This procedure is the 0

simplest, but will not give satisfactory grids for closely spaced bodies in

general. Similar ideas are presented by Harrington [11] where the bod-

ies are all mapped to rectangles and by Ives [12] where a Karman-Trefftz

transformation is used to map airfoils to the near circles.

Although the complex variable techniques by which conformal trans-

formations are usually generated are inherently two-dimensional, certain

more general cases can be treated by rotating or stacking two-dimensional

systems. For example, Dulikravich [13] has developed multilevel three-

dimensional, C-type periodic, boundary conforming grids for the calculation

of realistic turbomachinery and propeller flow fields. The method is based

on two analytic functions that conformally map a cascade of semi-infinite

slits to a cascade of doubly infinite strips on different Riemann sheets. For

*' the same type of problems Anderson, Davis, Hankins and Edwards [14] ap-

ply Shwarz- Christoffel transformation and demonstrate the validity of the -

grid in calculations of viscous turbulent flow through a turbine inlet duct.

it l

1 .
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2.3 DIFFERENTIAL GRID-GENERATION
SCHEMES

Differential grid-generation schemes have received widespread attention be-

cause of their versatility and the ease with which they can be applied. Here

the essential idea is to generate the coordinate mapping (and hence the

grid) as the discrete approximate solution to a partial differential equa-

tion, matching the given boundary shape as appropriate boundary or initial

data. The underlying characteristics of differential grid generation schemes

are depicted in fig. 3. We first recall some fundamentals for second order

partial differential equations and their solutions.

2.3.1 GENERAL PROPERTIES OF SECOND ORDER PAR-

TIAL DIFFERENTIAL EQUATIONS

The classification scheme for second order PDE's depends on the nature of

their characteristics. In the case of two independent variables, characteris-

tics are lines in the plane of the independent variables along which "signals"

can propagate.

Consider the second order quasilinear PDE in two independent variables

of the form

M A,., + B + C = 0 (1)

* where A, B, C and D may all be functions of x, y, 4, D and 4b. The

classification of this equation depends on the sign of B 2 - 4AC. If B 2 -

4AC > 0 the equation is called hyperbolic; if B2 - 4AC = 0, the equation

is parabolic; if B 2 - 4AC < 0, the equation is elliptic.

e HYPERBOLIC PDE'S

6
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Hyperbolic PDE's posses two families of real characteristics. Physical sys-

tems that are governed by hyperbolic equations involve signals that prop-

agate at finite speed. They are frequently posed in domains that extend

to infinity in the timelike coordinate and are thus unbounded in this di-

rection. The spatial coordinate may or may not be bounded. In either

case one typically specifies two initial conditions at t = 0. The character-

istics define the range of influence of initial data. If the spatial region is

bounded, boundary conditions are also specified; otherwise, we have a pure

initial-value problem. The prototype (model) hyperbolic equation is the

wave equation

*ft - c 24z = 0 (2)

where c is the wave speed.

e PARABOLIC PDE'S

Parabolic partial differential equations can be regarded as the limit of hy-

perbolic equations in which the propagation speed of the signal becomes

infinite. The prototype (model) parabolic equation is the heat equation

t = (3) 0

Since equation (3) is first order in time, only one initial condition at t = 0

is necessary, and there is only one set of characteristics. The domain of

*- solution is unbounded in time and the spatial domain may be unbounded

or finite.

9 ELLIPTIC PDE'S

Elliptic partial differential equations have no real characteristics. In

elliptic problems every point in the solution domain is effected by distur-

bances at every other point. The prototype (model) elliptic PDE is the

o
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Laplace's equation

4+ = 0 (4)

Boundary conditions are provided by giving the value of the dependent

variable, its normal derivative, or some linear combination of the two, at

each point on the boundary.

2.3.2 ITERATIVE METHODS FOR SOLUTION OF PDE'S

Iterative solutions and time stepping techniques to steady state are closely

related. We consider iterative grid generation for elliptic systems and

marching algorithms for parabolic or hyperbolic systems.

An iterative method applied to model PDE (4) is a procedure of the

type

[A,]4k+1 = [A2]k + d (5)

where A 1 and A 2 are matrices, d is a vector and k indicates the iteration

level. Given some initial guess 4() for the solution , we use (5) to find

4 (1) and 4 (2) and so on. If this is to be a satisfactory means of solving the

original equation, it should have the following properties: 0

1. it should converge to the exact solution of the original equation. ThatMN
is we should have limk...O V(k) = @, where D is a solution of [A]4 = b

_ 2. the convergence should be rapid if the method is to be efficient; that

is the above limit should be reached quickly.

3. so that each step does not require much computation, the matrix A 1

should be easy to invert and the matrix A 2 should be as simple as

possible to facilitate the computation of [A]24k.

I O4 -

_ _SS.~-
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In this section we consider Jacobi, Gauss-Seidel, SOR and ADI iterative

methods

e JACOBI METHOD

In the Jacobi method each new value of a function is computed entirely

from old values. Applied to model PDE equation (4) with uniform spacing

Ax = Ay = 1 the method can be written in component form as

I 1 0.25(P 1 + - + 4 + )_1, - 0.25bj,, (6)

where i - represents row, j - column and k - iteration level. New values

of 4)ij are computed by averaging the values of neighbors at the preceding

iteration and adding the inhomogeneous (boundary condition) term.

* GAUSS-SEIDEL METHOD

When we compute I in a Jacobi method, we have already calculated the

values of (Di-Ij and I . Since we expect at each iteration level the new

values to be better approximated than the old ones, improvement could be

achieved by using updated values. This leads, for model PDE eq. (4), to

= 0.25((Ii_ + ,+1, + 4t.ti + + - 0.25b1, (7)

which is the basis of the Gauss-Seidel method. Sufficient condition for

p convergence of the Gauss-Seidel method is diagonal-dominance of [A].9W
e SUCESSIVE OVER-RELAXATION (SOR)

* Instead of using 4-it as the input for the next iteration, we can extrapolate

-the preceding results. This leads to the procedure known as extrapolation

m .
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or over-relaxation. To introduce this idea, suppose that we use Gauss-Seidel

method to compute
3 -[M], - (8)

Using the key idea of extrapolation instead of using - as the new iterate

we modify it by weighted averaging as

1',,,.7 t.j+ (It i,. (9)

here, l is the most recent value of bij calculated from (8), , is the

value from previous iteration and -it is the newly adjusted value of iij.

For eq. (9) to be an extrapolation and stable, overrelaxation factor w should

be such that 1 < w < 2. In some problems (occasionally for nonlinear

problems) underrelaxation 0 < w < 1 is employed.

* ADI METHOD

The basic idea of ADI method is to introduce intermediate iteration level

k + 1/2 with operator splitting. The method can be presented as follows:

Let us split matrix [A] into two matrices [A] = [H] + [V such that

1. [H] + r[I] and [V] + r[I] are nonsingular for any r > 0.

2. It is convenient to solve

([H] + r[I])ul = b, (10a)

([V] + r[I])u2 = b2 (10b)

where b, and b2 are any vectors and r > 0. Here the term "convenient" S

is taken to mean 'easy to solve on a computer' and thus we shall select

[H] and [V] as tridiagonal matrices (or matrices convertible to tridiagonal

ClS
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form). In the Peacman-Rachford method (Lapidus and Pinder [15]), we

select a value r > 0 and write

([H] + r[I)uk+1/2 = b - (V] - r[I])uk (11)

([V] + r[zI)uk+l = b - ([H] - r[I]) Uk+ 1/2  (12)

with the vector uk+1/2 being an intermediate vector. Thus (11) is used with

u(k), the matrices [H] and [V], and r to calculate u(k+l/ 2); then (12) is used 0

with r to evaluate u(k+'). In this way the iteration proceeds from u( ) , 1). . .

The idea here is the selection of [H] and [V] so that (11) uses lines in

the z direction only and (12) uses lines in the y direction only. In order to

consider convergence of the method let us define error vector CSk) = U(k) _-U

where u, the correct solution, satisfies

([H] + [Vl)u = b (13)

It then follows that

-~+1 [G]7SEk)

where [G], = ([V]+r[I])-'([H]-r[I])([H]+r[I])-([VJ-r[I]) is the iteration

matrix. It is necessary for convergence that the spectral radius [G]. satisfies

r([G],) < 1. If matrices [H] and [V] are positive define, the above condition

holds. For model equation (4) the method can be written (with r = 1) as

a first step:

k+1/2 +/ k+1/2 Ok(~Oi-ij - - -,, + 10 20j %j-(€i,j W -2 d ¢i+ x1j) (14)

* second step:

2k+ _ + qS,k+, 1 = k+1/2 - ,4+l/2 + /2) (15)
" i - l1 j - ' r~ -2 "l j 2 0-i l j - ' r d " "~ ~
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The iteration begin with an initial estimate of the (Io) vector, and com-

putation is terminated when successive calculations agree within a given

tolerance.

Except for the additional work of recalculating right sides, this method

has little computational effort and converges fast. The coefficients matrices

are always the same, so the reduction step need be performed only once.

i
2.4 ELLIPTIC GRID GENERATION SCHEMES

Elliptic schemes require the specification of data on the entire boundary of

the domain. The location of the interior grid points is then determined by

* solving a set of elliptic partial differential equations. The most commonly

used are the Laplace and Poisson equations. In the former, with equispread

boundary points, the coordinate lines will tend to be equally spaced in

the absence of boundary curvature, because of the smoothing effect of the

Laplacian. In the Poisson case mesh control (coordinate lines clustering

and inclination) can be accomplished by means of an appropriate choice of

forcing functions.

The Poisson system defines the computational ( , 77) coordinates by 6

G- + CvY = P(C, 77) (16a)

* ?7/ + 77.Y = Q(C, 77) (16b)

where P(C, 77) and Q(C, 77) represent forcing functions that are specified and

depend on the nature of the problem and the desired grid point distribution.

4 The primary advantages of such elliptic systems for grid generation

are: (1) they frequently generate one-to-one mapping; (2) the coordinate

*. lines are smooth owing to the inherent smoothness in the solution of elliptic

4N

4 6
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systems; and (3) boundary slope discontinuities are not propagated into the

field.

Grid generation schemes formulated using the Laplace and Poisson

equations have been extensively applied for various two- and three-dimensio-

V, nal configurations. For example, Thompson, Thames and Mastin [16] and

Holst [17] control the interior grid distribution using exponential forcing

functions which contain adjustable parameters. The selection of these pa-

rameters, however, depends on the shape of the body surface. They provide

the means to move the coordinate lines around but not the proper ampli-

tudes and decay factors necessary to achieve desired spacing distributions.

o- Hence, this technique requires interaction from the user. 0

Sorenson and Steger [18] introduce automatic mesh-point clustering

near the boundary and Sorenson [19], applies the idea to elliptic grid gen-

eration for discretizing the flow about the augmentor- wing using a compo-

nent adaptive grid interfacing technique. His method differs from that of

Thompson, Thames, and Mastin [16] in that it uses forcing terms P(C, 77)

and Q(C, 77), which yield the ability to arbitrarily impose two types of con-

trol on the grid at boundaries. The first type of control is of the angle S

on inclination at which the lines of constant C intersect the boundaries;

the second type of control is on the distance between the airfoil and lines

77 = constant.

5 Coleman [20] applies the Laplace or Poisson equations to produce a

mesh which adapts to the physical region of interest. The method provides

arbitrary segmentation in the physical plane and mapping to a union of

• rectangular grid sections. 0

Chen and Obasih [21] introduce contracting functions for the grid inside

the computational domain. They treat contraction functions P(, rq) and
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Q(, 7) in the original Poisson equation as unknowns, and require orthog-

onality of coordinate lines near boundaries, to determine expressions for

P( , 71) and Q( , 77). Similar ideas are given by Visbal and Knight [22] and

Shieh [23].

2.5 HYPERBOLIC SCHEMES

Hyperbolic schemes are obtained by integrating a hyperbolic PDE for the

grid lines and require Cauchy data on the boundary. The grid may be

generated explicitly by marching outward from the initial boundary. For

example Thompson, Warsi and Mastin [16] discuss the system

xy, - yxn = Y(, 77) (17)

T-t".X x7 -YCY 7 = 0 (18 )

for generating a grid. Here V( , 77) is the Jacobian of the transformation

and represents the area in physical space for a given unit area element

in computational space. If V(C, 77) is given as function of position then

equation (17) can be used for grid spacing control in the physical plane.

Equation (18) represents a measure of the orthogonality of grid lines in the

physical space. After linearization of equations (17,18) about a known state

(7, g) we have the system

[Alrt + [Br,= f (19)

where

.r = ]"[A] 77 ;[B] = f ;f

* The eigenvalues of [B]-[A] 0

1.7+1= (20)

Xt0

=F y)
.y -

Zq
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are real and positive which implies that system (19) is hyperbolic in the q/

direction and can be marched in 7 as long as 7 + 0

In generating a grid with this scheme first assume the body surface is

the 77 = 0 surface and specify the distribution of points along the body.

Next the quantity V( , 77) in eq.(17) is required. Steger and Sorenson [25]

suggest that V( , 77) can be determined by laying out a straight line with

length equal to that of the body surface, and then lay out the body point

distribution on this line (i.e., arc length distribution of surface points).

Next a line parallel to the first line is drawn on the 77 = constant surface as

desired. Once this is done, the quantity V(C, 2q) is determined by estimating

the area elements of the grid. Application of a hyperbolic scheme for airfoil

problems is given by Steger and Chaussee [26] and for the three-dimensional

grid about a shuttle cross-section by Kutler [27].

2.6 PARABOLIC SCHEME

Grids may be generated by parabolic schemes explicitly by marching as
in the hyperbolic grid-generation method from an "initial" boundary. As

in the elliptic schemes diffusion smoothes out any irregularit;'s in the grid

due to the shape of the initial line (inner boundary). The importance of the

marching algorithm is twofold: first, the computational time required may

frequently be only a very small fraction of that for elliptic grid generation;0
second, storage required during grid generation can be substantially reduced

from that required by the elliptic grid generation method. We demonstrate

these points for a particular form of parabolic scheme in later numerical

* experiments. 0
Np' The parabolic schemes are applicable to both, two- and three-dimensi-

onal problems. Nakamura [28] applies a parabolic scheme with simplified
S
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second derivatives to 0-type and H-type grids for single airfoils and Naka-
mura [29] applies parabolic differencing scheme to one coordinate variable

of a three-dimensional elliptic equation set for fuselage-wing configurations.

Edwards [30] extends this three-dimensional grid generation algorithm to

two of the coordinate variables while the third is centrally differenced and

generates a grid about a wing-fuselage and an aircraft configuration.

Parabolic systems have previously been considered to be limited in the

configurations that they can handle. In the present study we demonstrate

that parabolic schemes can be extended to complex configurations with

orthogonality satisfied on inner boundaries, and apply the method to rep-

* resentative multi-airfoil problems.

2.7 ADAPTIVE GRIDS

Adaptive grids are dynamic grids in which the grid points are automatically

readjusted as the solution evolves. Some aspect of the developing solution

must be used as the error indicator for redistributing the grid points. We

note that readjustment of the grid points must yield a grid of acceptable

smoothness and orthogonality. The grid points should be clustered in re-

gions of large solution variations and be well graded into such regions. As

an example, Brackbill [31] employs an objective function which contains
a measure of grid smoothness, orthogonality, and volume variation that is

minimized over a class of admissible grids. The smoothness of the trans-

formation is represented by the integral

IS = ID[(V )2 + (V7) 2 ]dV (21)6
A measure of orthogonality is provided by

- (V V,7) J dV (22)

' 0
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and an error indicator measure (weighted by the Jacobian)

V IvW= WJdV (23)

where W is a given weighting function and J is a measure of cell vol-

ume, usually the Jacobian of transformation. If Iv is minimized for a fixed

W(x, y), J (the grid size) is made small where W is large and vice versa.

The weight function W(x, y) is the error indicator and is to be a function 0

of some measure of the solution error, so that the spacing will be reduced

where the error is large. As a final objective function a weighted sum of

(21) - (23) is taken. The inclusion of (21) and (22) as integral constraints in

* the objective function ensures that the optimal grid has reasonable smooth-

ness and orthogonality, respectively. Brackbill [31] implements the adap-

tive control through terms in an elliptic generating system and Saltzman

and Brackbill [32] demonstrate results for multiple shock reflections in a

wind tunnel problem. Anderson and Rai [33] give a procedure based on

an analogy with electrostatic charge attraction which is applicable to any

coordinate system and demonstrate the effectiveness of the shock aligning

scheme for a straight oblique shock in a uniform supersonic flow.

3 NEED FOR BOUNDARY-FITTED CO-
ORDINATE SYSTEM

There arises in all problems concerned with the numerical solution of par-

tial differential equations the need for accurate numerical representation of

boundary conditions. For example, in the present study we seek to define

points of a finite difference grid constructed on coordinate lines that coin-

cide with the boundary. That is one coordinate variable can be specified to
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be constant on each of boundaries, and a monotonic variation of the other

coordinate around each boundary can be specified as the data for our dis-

cretized partial differential equation problem. It then remains to generate

values of these coordinates in the field from prescribed boundary or initial

values. There must, of course, be a unique correspondence between the

basic coordinate system and the curvilinear coordinates; i.e., the mapping

of the physical region onto a transformed computational region must be

one-to-one, so that every point in the physical field corresponds to one,

and only one, point in the transformed field, and vice versa. Coordinate

lines of the same family must not cross, and lines of different families must

* not cross more than once (i.e., the Jacobian of the transformation must be

nonsingular at each point). Further, the grid lines should be smooth to pro-

vide continuous transformation derivatives. Grid points should be closely

spaced in the physical domain where large numerical errors are expected

and excessive grid skewness should be avoided because it can sometimes

amplify truncation error.

Since the boundary-fitted coordinate system has coordinate lines coin-

cident with the surface contours of all bodies present, all boundary condi- 0

tions for the problem can be expressed at grid points without recourse to

- interpolation or projection, and normal derivatives on the bodies can be

represented using finite differences between grid points even though the co-

ordinate system may not be orthogonal at the boundary. The transformed

equations can then be approximated using finite difference expressions and

solved numerically in the transformed plane.

6 .
~ ~-AA
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3.1 TYPE OF GRIDS

Requirements on the type of grid to be used in the physical domain are

mainly problem dependent. Three grid types for aerodynamic flow prob-

lems are in common use and have been termed l-type, 0-type and C-type.

" A H-type grid (fig. 4a) provides excellent resolution of the flow field

at upstream and downstream infinity. It is also the simplest grid to

generate. At the same time, H-type grids do not provide an accurate

treatment of rounded leading and trailing edges and grid points in

the flow domain away from the boundaries are not well clustered.

* An 0-type grid (fig. 4b) represents a coordinate system having lines

encircling a body. It gives very poor resolution at infinity, but pro-

vides very good resolution for blunt and rounded edges, and uses few

grid points

" A C-type grid (fig. 4c) indicates a coordinate system with lines ema-

nating from a boundary, passing around a body and returning to the

boundary. The grid represents a combination of an 0-type grid in

the upstream region and H-type grid in the downstream region. This

type of grid provides a good treatment of all boundary and period-

icity conditions including wake treatment and supersonic exit flow,

although it may not yield an adequate resolution at upstream infinity

for certain applications such as cascades.

I
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3.2 TRANSFORMATIONS BETWEEN PHYSICAL
AND COMPUTATIONAL PLANE

The general transformation from the physical plane [x, y] to the transformed

plane has the form

(Xly) ](24)77 70 vxY)

The Jacobian matrix for this transformation is

77 ex

The inverse function or transformation of (24) is, O

X X(1,17) (26)

with Jacobian matrix

J2 (XY) 1 t r (7
J2 -o(, 77)- ; ] ( 27

The Jacobian is then:

J = det[J] =xy,7 - zy

Since J 1 = [_ -[G G, Y77 -X,7 (28)

we get the following relations:

(29a)

= 7 - (29b)

1 J0
l0
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X1 (30a)

77Y (30b)

Using the chain rule, partial derivatives of a given function f with re-

spect to xand yare transformed as follows,

* f Of 8R, f7-(32

ax = =1 = (31)f~1

+" [(fx - yy, X 4(f - ~,f4 /J (33)

= (y,7ft - 2yy7f, + y~f,7,)/j 2

" [(xy,7t - 2yxyx7yt, + yt,,)(,f - xf

" [(yx~ - 2yxex7yt, + yt x77(t, - yftaI/J3  (34)

yy= [ (zy + X,7 A~f, + 0d

+ [(' - x~yt + x")x,7f -(ytf, -

+ [X'?Y'yt - (X Y'7 + Xz7yt)yt' + X ''7(j - zf)/j 3 (35)

Somala= El
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and so on.

Sufficient conditions for the transformations (26) to exist are given by

the inverse function theorem that states: if the component functions of (24)

are continuously differentiable at some point, say (xi, yi), and Jacobian

matrix (25) is nonsingular at (xj, yl) then there exists a region M, about

(Xi, Y) such that the inverse function (26) exists and (28) holds for all

[(x, y)] in MI. It is apparent that the theorem guarantees existence only

in a local sense. For this reason component functions of (24) which posses

even more desirable properties than those stated for the inverse function

theorem are sought.

4 AN ELLIPTIC SCHEME AND
APPLICATION

The basic idea of the transformations in section (3) is to let the compo-

nent functions of (24) be solutions of an elliptic Dirichlet boundary value

problem. An obvious choice is to require that (x, y) and r/(x, y) be ei-

ther harmonic, subharmonic, or superharmonic. Harmonic functions obey

a maximum principle, which states that the maximum and minimum val-

ues of the function must occur on the boundaries of the region D. Since

no extremes occur within D, the first derivatives of the function will not

simultaneously vanishes in D, and hence the Jacobian will not be zero due

to the presence of an extremum. The maximum principle also guarantees

uniqueness of the coordinate functions (x, y) and 77(x, y), and thus ensures

that no overlapping of the boundaries will occur.

Now, let us take Laplace's equation as the generating elliptic system.

, + yy = 0 (36a)

b6
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17-- + 7. 0 (36b)

with the Dirichiet boundary conditions[ ~] = [ j1(x, Y)];[Xyl EG, (37a)

[I ] = [ 12(X, Y)][ y]IE G2  (37b)

where ,h and rh are constants and C, (x, y) and 6 (X, y) are specified mono-

tonic functions on Gi and G2 respectively (fig. 6). That is, let (x, y)

and q(x, y) be harmonic in D. This generation system guarantees a one-

to-one mapping for boundary-conforming curvilinear coordinate systems

* on general closed boundaries. Since all numerical computations are to be

performed in a uniform rectangular transformed plane, the dependent and

1~ independent variables must be interchanged in (36). Using transformations

(31) - (35), and knowing that coordinate lines in the transformed plane are

constant, we get

2 y4y - +'y,,,,)x,,

+ (y~x44 - 2yy7y, + y~x,,)(-y,7)]/J 3  (38)

+ (y,' x4 - 2y~y,7y4, + y,,,,)(yC)]JJ (39)

2 _2

=y [(2:,,l/ - 2 xea,,yt,7 + x4'1)1

(x'xtt - 2xxt + XIX,,)(-Y")I/j 3  (40)

77Y R [(yt - 2xxy, + x 2,,)(~

+ (X2.Tt - 2.tx7x, + T2.T?')(yt)j/j 3  (41)
170
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and the transformed system has the following form

(Axtt + Bx4,7 + Cx,7,,)(-y,,) + (Aytt + Byt, + Cy,,)(a,) = 0 (42a)

(AxCC + Bxt,, + Cx,7,)(yt) + (Aytt + By4,7+ Cy,?,7)(-xC) = 0 (42b)

Where the coefficients are

A = 2 +Y'2(43a)

B = -2(xtx,, + yty,,) (43b)

C =X2+yt2 (43c)
or

-CIY,, + C2X, = 0 (44a)

CIY - G~ = 0(44b)

where

C, = Axtt + B% + Cx,,,7

C2 = Aytt + Byt,? + Ci,,7

Since the Jacobian determinant is nonzero, a nontrivial. solution of system

(44) exists if C, = C2 = 0, and we get the coupled system

Axct + Bxt, + Cx,, = 0 (45a)

Ayct + Byt,, + Cy,,7,= 0 (45b)

with transformed boundary conditions

X 0IC'1 C71 j 4a
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qi r h 1 - 4b
I, The functions pi(C, qi),p 2 (C,rh7),q 1(C, 712) and q2(C,qp2) are specified by the

known shape of the inner and outer boundary. Assuming uniform spacing
on the computational domain, the central difference equations approximat-
ing (45) at grid point (ij) may be written,

A~ilj- 2 xij, + x,+1,,) +

B~xijj~j- Xi...lj+l - xi~l,, 1l + xi+,,+1)4 +

C~ijl- 2z,,1 + xzj,,+) = 0 (47)

A~ilj- 2yj + w+,,) +
B~~yi-,-l-y-,l - y:+,,-i + yi+i, 1+,)/4 +

C~ijl- 2yi,, + yi,j+i) = 0 (48)

* that is, in general form

As-j- 2s,,, + si+, 3) +

B~s~j~~j- sijl- si+i4 ... + si+,,+i)/4 +

Csjj- 2si~j + 8,,,+i) = 0 (49)

where se,, represents Cartesian coordinate x or yi.
* The discretized system (49) can be solved iteratively using a relaxation

scheme of the form described previously, such as successive over-relaxation
(SOR) or alternating direction implicit (ADI). until a specified convergence
criterion is satisfied.

Adding forcing functions terms in eqs. (36) we get the Poisson system

Ez+4= P(C 7 7) (50a)
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7- + 7. = QV, 7) (50b)

and applying the same transformation procedure this yields instead of

(42)

Axt + Bxt + Cx,7, = -J 2 [P( , 77). + Q(C, 77)x,7] (51a)

Aye + Bye,, + Cy,,, = -j 2[P( , rl)y + Q( , 77)y7] (51b)

As noted previously, the distribution of grid lines obtained by solution

of the discretized form of equations (49) will tend to be equally spaced in

the absence of boundary curvature because of the smoothing effect of the

Laplacian, but will become more closely spaced over convex boundaries,

and less so over concave boundaries, as illustrated in fig. 5a. For the first 0

example in fig. 5a we have 77., > 0 because of the convex curvature of

the lines of constant 77. Therefore it follows that r7y < 0, and the spacing

between the 77 - lines must increase with y. The 77 - lines thus will tend to

be more closely spaced over a such convex boundary segment. For concave

regions (the second example in fig. 5a) we have 77., < 0, so that 277, must

be positive, and hence the spacing of the 77 - lines must decrease outward
from this concave boundary. Considering eq. (50b), it follows that negative S

values of Q( , 77) will tend to cause the coordinate line spacing to increase

more rapidly outward from the boundary. In gencral, .... values of

Sthe control function Q(C, 77) will cause the i7 - lines to tend to move in the

direction of decreasing 77, while negative values of P( , 77) in eq. (50a) will

cause - lines to tend to move in the direction of decreasing . These effects

are illustrated in fig. 5b for an 71 - line boundary. With the boundary values

* fixed, the C - lines here cannot change the intersection with the boundary.

The effect of control function P(C, 77) in this case is to change the angle of

intersection at the boundary, causing - lines to "lean" in the direction of

F I
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decreasing .

Generalizing, a negative value of the Laplacian of one of the curvilinear

coordinates causes the lines on which that coordinate is constant to move

in the direction in which that coordinate decreases. Positive values of the

Laplacian naturally result in the opposite effect.

4.1 COORDINATE SYSTEM CONTROL

Control of the spacing of the coordinate lines on the body is accomplished

through the input data, while the spacing of the coordinate lines in the field

is controlled by varying the elliptic generating system for the coordinates.

* One procedure that has proven effective for some aerodynamic applications-6

( Holst [17], Thompson, Thames and Mastin [16] ), is to choose forcing

functions P(C, 77) and Q(C, r7) as exponential terms

N
P(C, 7) = - aisign( - Cie - Cil - GI)

i=l

M
bj sign( - & )e-d )2+"-?, )21 (52)j--1

N
Q(C, 7)= - aisign(77 -

M i=1

S-E bjsign(r7 - r7i)e - d /[(. -.J) 2 +(-')21 (53)
.=1

The first terms in P(, 77) and Q( , 77) have the effect of attracting the

*constant lines to the = Ci lines in eq. (52), and attracting 77 = constant

* lines to 7 = 77 lines in eq. (53). The second terms cause = constant lines

to be attracted to the points (Cj, 77j) in eq. (52) with a similar effect on

71 = constant lines in eq (53). Introducing the sign function, the equations

Iv-
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(52) and (53) are no longer subharmonic or superharmonic, since the sign

function causes a sign change on the right side when the attraction is to

lines or points not on the boundaries. So, it is possible that too strong an

attraction may cause the system to overlap and produce unusable grids.

* The use of the sign - changing function is used to cause attraction to both

sides of a line or point in the field. Elimination of this function causes

attraction on one side and repulsion on the other. If it is only desired that

coordinate lines be concentrated near one boundary, (i.e., the body surface)

then there is no need for the sign change, and the sign function can be

eliminated. In this case the equations are subharmonic or superharmonic,

* and a maximum principle is in effect to prevent overlap. The effect of the

amplitude factors in (52, 53) is shown in fig. 5c.

4.2 APPLICATION OF THE ELLIPTIC SCHEME

The elliptic grid generation scheme can be applied to both single and mul-

tiple bodies. Referring to fig. 6, assume that the body contour and the

outer boundary transform, respectively, to the q - lines forming the lower

and upper sides of the rectangular transformed plane; arbitrary cuts that 0

join those boundaries map to the - lines forming left and right sides of

the transformed plane. Thus the left and right side vertical boundaries in

the computational plane are coincident in the physical plane; the values of

x and y coordinates are equal along these lines. The computational field
size is (JM - 2) x (IM - 1). Boundary values are specified on j = 1 and

j . l for all 1 < i < IM. The line j = 1 corresponds to the body sur-

face in the physical plane while j = JM corresponds to the outer boundary. 0

The discretized form of the governing equation in the computational plane

is given by (49). The re - entrant boundaries occur at i =1 and i = IM.

4,

g"S
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Since the values of x and y are equal along these lines, iteration is necessary

along only one of them. For i = 1, the - derivatives along this line can be

approximated as

(xf)i,j = (x2,j - xlM,)/ 2  (54a)

(Xt)ij = X2,j - 2xlj + xIM-Ij, (54b)

(Xt) ij =(X2,j+l - X2,j-1 + XIM-Ij-1 - XIM-I,j+1)/4 (54c)
i0

for 2 < j < JM-1. Similar expressions can be used for the derivatives of y.

The set of simultaneous difference equations in xij and yij is solved by point

SOR iteration in the present numerical experiments. The same idea may

* be extended to multiple bodies. In this case we introduce additional cuts

that connect bodies and apply a computational procedure similar to that

for the single body. For two-component bodies the transformed boundary

conditions are given as follows (fig. 7)

[Xi = [(77 )] ;[q" ] E Gj (55a)

[Y] = [q2( , ] ;[q] E G* (55b)[][ ].Y q2(( , r)

. = P 1(71) E G; (56a)

x1 q3( r/2 )

,y = q4 ( '2) [,21 E G (56b)

The functions P1, P2, qj, q2, p 3,p4, q3 and q4 are specified by the known shape

of the contours G1 , G2 , G7 and G8 and the specified distribution of thereon.

*Re-entrant boundaries occur on G;, G*, G* and G. Derivative approxima-

tions on these boundaries are determined using a procedure similar to that
given by (54). In the present study we generate grids about single and

4 0
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multiple airfoils by use of equations (45) and (51) on uniform grids in the

computational plane following the procedure of Thompson, Thames and

Mastin [16].

Fig. 8 shows an O-grid about NACA 0012 airfoil generated by the ellip-

tic scheme with clustering functions P(C, 77) and Q( , 7) given by eqs.(52,

53). The grid size is 61 x 28 and radius of the outer boundary 3.0 x chord.

The attraction is applied for five coordinate lines near the airfoil surface

and leading and trailing edges. The initial guess is determined using the

average values of four boundary points. For a fixed acceleration parameter,

a convergent solution was obtained after 99 iterations and 48.561 seconds

of CPU time on the CDC 750/175. The grid in fig. 9 is generated using

the elliptic scheme (45). The grid size is 49 x 16 and radius of the outer

boundary 1.2 x chord. The initial guess is determined as the solution of the

parabolic scheme (68, 69). In this case a convergent solution was obtained

in 1.971 seconds of CPU time. Good clustering of the coordinate lines at

leading and trailing edges of the airfoil is evident.

In fig. 10 and fig. 11 C-type and H-type grids, respectively, are shown.

Both grids are generated using the elliptic system (45). The initial guess S

is determined in the same way as for the 0-type grid. It can be seen in

all three cases that the system (45) provides good smoothness of the grid

lines, but does not provide clustering of the grid lines at the body surface.

Fig. 12 is an O-grid about two NACA 0012 airfoils with flap angle

of 25 degrees. Grid size is 69 x 20 and radius of the outer boundary 4.0

x chord. Attraction is applied for six coordinate lines near the airfoils

and at the leading and trailing edges of both airfoils. The initial guess is S

specified using the average values of four boundary points. Convergence

of the solution, with constant acceleration factor, was obtained after 275

;
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iterations and 105.702 seconds of CPU time. A detailed grid distribution

near the airfoils is given in fig. 13.

In all numerical experiments it was observed that the efficiency of the

elliptic scheme depends on the accuracy of the initial guess. Using the

average values of four boundary points or linear/exponential projection of

boundary points offers the possibility of generating good starting iterates.

Experience indicates that solution for both single and multiple airfoils, is

sensitive to the initial guess and distance to the outer boundary and in

some cases a solution may not be obtained. The solution often converges

slowly.

5 PARABOLIC SCHEME AND APPLICA-
TION

5.1 GENERAL OBSERVATIONS

In the present study we examine the feasibility of using parabolic partial

differential equations for grid generation by considering the pair of model

equations

a( , 7)x,,- b(= , 7)x + c( , 77) V(, ,7) + d(C, 77) (57)

= (,)yC + c( ,?1)Vy(CTI) + d (58)

* where a, b and c can be constants or some functions of ( , 77); (x, y) denote 5

the coordinates of the physical domain, ( , 77) the computational domain,

and (V , V) source terms. The physical and computational domains are

shown in fig. 14. Unlike the elliptic scheme, in the present approach the

inner boundary represents an initial condition, and the outer boundary

represents a constraint that effects the j-coordinate line distribution. The

S S
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point distribution on remaining segments is given and represents boundary

conditions on left and right sides of the computational plane. Equations

V (57,58) can be discretized using backward differencing in the (timelike) 7m-

coordinate. Given the initial values of x and y at qj = 0 this leads to a

tridiagonal system to be solved for each increment of 77.

The initial values are specified as

x(, 0) = X()
i- Xy(C, 0) = Y0(W (59)

where xo(C) and Yo(C) are the coordinates of the body surface. In order to

examine the effect of the source terms , let us set b = d = 0 so that

OX (C,7) c
'=- -(C, 77) (60)

1977 a

0y(C,r) = Cv(Cr) (61)
077 a

From (60,61) we see that as r increases, the change of x and y is determined

by V and V. This implies that V and V should be specified in such a

way that x and y change in a desired direction and amount. The role of xt

and yc in eqs. (57,58) may be considered as smoothing the grid intervals

in the direction. V and V can be approximated in (60,61) by using

* linear or polynomial interpolation between the inner and outer boundaries. 0

The orthogonality of the grid lines may be controlled by introducing a

"fictitious" outer boundary, and grid spacing in both the C and 7 directions

can be controlled by discretization of the governing equations (57,58) on a

O_ nonuniform mesh in the computational plane.

N
",U
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5.2 NUMERICAL DEVELOPMENT OF
PARABOLIC SCHEME

In most coordinate transformations used for computational analyses the

grid spacing in both the and r directions on the computational domain

is set to unity. However, this restriction is not necessary. When deriving

generation equations, we can assume that grid spacings are quasi- uniform

on the computational domain. Once a grid is generated, it may be used

for flow calculations as if generated on a uniformly spaced grid on the

computational domain. Using Taylor series expansion on a nonuniform

mesh and referring to fig. 15a, derivatives can be approximated as follows

f+,j - jj or f-- j - -,j
AR AL

A- fid+l - fij or f fij - fij-1

AU AD
2 fi+l,j - fij + fi-j -- fij

f R +A L AR AL
S= 2 f1 +1 - f1ja fi, - fi,j

AD + AU AU AD

fzl fi+lj+l - fi+lj-1 - fi-l,j+l + fi-ij-1
(AL + AR) (AD + AU)

and the governing equations (57,58) can be discretized as

a(Xi'j -Xi'j-1) _ 2b zi1,_ * - Xi~j + ,' - •i
I b - ,, 1v +

AD (AL + AR) AL AR
XB,JMAX - Xi, + d (62)

AO

* a(yij - Yij-1) 2b Yi- -- Y:i.j Yi+l,j - yij] 0
AD (AL + AR)1  AL AR

YBi,JMAX - Yj + d (63)
AAO
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In order to determine coefficients a, b and c and to explain the proposed

method of controlling grid spacing the idea is to relate the model equa-

tions to some known set of equations in the computational plane. For this

purpose, the grid generation of elliptic type (45), is selected. In fact, the

procedure that we want to apply is essentially equivalent to deriving the

elliptic difference equations (45) on the nonuniform grids of the computa-

tional domain in which the m-th grid line in the qdirection on a uniform

grid is moved toward the (m - 1)-th grid line. Using the above procedure,

an arbitrary number of grid lines may be moved in both the C and 77 direc-

tions. By denoting the distance ratios by F and g1 in the C and 1 directions,

respectively, (fig. 15b), the difference equations that yield the grid spacing

can be written as

2A s[-ij - Si, + si ] - SiI +

F, + Fi-1  Fi-1  F

B[Si ~l - si+i,.- - 4i,.+i + $s-l,j-1 +
(F-1. + F)(gi-I + g+)

2C [si.1 - s,j + i - = 0 (64)

gj + g- 1 gj-1 9j

We then have elliptic PDE's (45) discretized on a quasi-uniform mesh in

(V, 7). 
Now, a marching grid generation equation scheme may be obtained

from (64) by replacing the coordinates zxj+1 and yi,j+l by known values

XOi,,+l and YOij+j obtained from linear interpolation between coordinates

of the outer and inner boundaries. The ratio gi can be relaxed in practice

i.e., it may be gradually changed along the grid line in some functional

* dependence.

In the simplest case, when we do not force orthogonality on the bound-

aries, coordinates XO and YO are set to the known values (XBi,JMAX,

4 •
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YB,JMAX) at the outer boundary. In general, however, the marching grid

generation equations for both the x and y coordinate may be written in the

* form:

2A r -i -
8

ij~ + si+14j - 8$t4I +
Fj + Fi- F,1I F

-~~ (Fi-.1 + Fi)(gj-l. + G1

2C it + S Olj1(65)
g1-l + G, g,....i

* where:

G3 represents the distance between grid lines (i, j) and (i, JO) on the corn-

putational plane and SO,,, = XOjj or YO,,,. In order to establish a relation

between discretized model parabolic system (62,63) and system (65), let us

compare those two systems. Separating known and unknown values we get

b6 2i a +c +6 2si-...i +AL~~ -±-- AL + AR :D - R(AR +AL)+
b 2s~~ _ SB,JMAX . a 8i'j-d (66)

AR (AR±+ AL) AO AD

A +A) 2si,, C +C) 2s, + A 2 8,....i +

A 28 _i 2C [SOj'+1 + L ~ -
*F, (F, + F 1) gj- 1 +G G, i-

B[SO41j+1 - SO.. 1,,+1 - 8,+1,3..1 + 8 i-13 -1(7
B[ ~(F + Fi- 1)(g,-l + G,) ](7
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In both equations the right sides are known values. It can be seen that they

have the same form. So, we can establish a relation between coefficients of

eqs. (62,63) and (65) as follows

b =A

2C
a c (Gi + g,.)

soi+14j+1 -SOi-1l 4 +l - Si+1,3-1 + si 0-d= B[ (j+F-)G j,

Where the coefficients A, B and C are given by (43). In fact, system (65)

represents a 2 x 2 block tridiagonal system that can be evaluated as follows:

defining
2A 2A

Ce=F,(Fi + Fi- 1)' ly F,(Fi + Fi-1)

,3 -2A (1 1 2C 1 + 1

*~~D = -B[XO+,,j+ 1 - XOi-.., 1+1 - xT.1,1... + xi-1,3-1]/[(Fi + F,... 1)(G,
2C

+ ga-1)] - Gj+ g... [xjgi-pji + XO,+l/G 3]

Dy= -B[YO+,,j+ 1 - YO, 1,,~1 - y:+1,j-1 + yi-, 1-]/[(Fi + F,..1)(G,

+ gi-i)] - C + ,. y,-i/g,-i + YOi 4 +u/GI

the governing equation in the x-direction becomes

axi-..10 + /Oxi, + yxi,1 ,j Dx (68)

and similarly in the y-direction:

ciy... 1,. + f3yi,, + tyi+',, Dy (69)

I IJIIIIJI II
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Equations (68) and '9) are solved simultaneously for all grid points on

the j-th grid line by using a tridiagonal solver for each xij and yij. The

solution starts with j = 2, (next to the inner boundary) and marches until

j = JMAX - 1, (next to the prescribed outer boundary grid line). The

coefficients of A, B and C are calculated using the coordinates of adjacent

grid lines that are already generated, and the first derivatives that appear

in them can be approximated by differencing as,

= 2 i1j-1 - Zi-lj-1 (70a)

y i+1j- Yi-i-*j-i (70b)Y = F + FIW

X Oi)j+l - Xij-11a)

g3 -1 + Gi

A Yo,3 +1 - (71b)
gi-1 + Gi

The non-uniform grid spacing terms in the above scheme have effects simi-

lar to the spacing control terms in the exponential functions introduced by

Thompson, Thames and Mastin [3] for the elliptic scheme. The value of F

or g and the distance between the adjacent grids satisfy approximately a

linear relationship. Therefore, if a grid is generated by using a known set

of F and g for all the grid intervals, and if a different spacing distribution

is desired in the next grid generation the values of F and g that satisfy the

desired grid spacing can be found by the linear relationship between F and

g and the grid spacing in the previous calculation.

5.3 GRID SPACING CONTROL

In computation of viscous flows or boundary layers, orthogonality of grid

lines near the boundary surface is desirable to represent all normal deriva-

4 M
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tives simply and accurately. To obtain this, the angular orientation of grid

lines may be controlled by using a modified outer boundary grid to deter-

mine the right hand side source terms. For example, if the grid is shifted

in such a way that the new outer boundary points lie on lines which are

perpendicular to the body surfaces, the grid lines will be away from the

inner surface approximately orthogonally.

Let us first consider the coordinates (XOi,3 , Y01 ,3), corresponding to the

grid line j = 2. Referring to fig. 16 a straight line AA is extended outward

normal to the airfoil surface from the grid (i, 1). A circular arc CC that

passes through the point (XBi,JMAx, YBi,JMAX) on the outer boundary

*e and has its center at (i, 1) is drawn. The coordinates (XO, 3 and YOi,3 )

are set to those of the intersection S of the two lines AA and CC.

In the present work, the modified outer boundary is computed by first

calculating the slope of the body surface and the distance from the body sur-

face points to corresponding outer boundary points. The modified bound-

ary is scaled so that it lies at the same distance from the body surface as

the actual outer boundary. This is needed to obtain the desired clustering

or stretching of grid lines. Since the parabolic algorithm generates the grid

lines progressively toward the outer boundary the modified grid is gradu-

ally shifted back to the desired outer boundary point distribution. In this

manner, angle control is maintained at the body surface, and a smooth

transition can be made to the outer boundary.

5.4 EFFECT OF THE COEFFICIENTS ON GRID
GENERATION0

Here we explore the possibility of generating grids with different values of

coefficients in (68,69). We consider the cases:

I 0
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" CASE 1:

A = A( ,,T),B = B( ,77),C = C(, 71)

* CASE 2:

A = A( , q),B = O,C = C(, 7)

" CASE 3:

A = A(Crl),B = O,C= 1

" CASE 4:

A = O,B = B(C,7),C = C( , 7)

Case 1 represents the method applied in the present study. Cases 2 and

3 produce reasonable grids (see fig. 17a and fig. 17b, respectively), but

in these cases smoothness of the grid lines is poor. Case 4 is interesting

because it provides a completely explicit grid generation method in the 77

direction. Grids from case 4 are given in fig. 17c and we can see that they

are very similar to that obtained for case 1. Other combinations of coeffi-

cients may not provide grids because boundary information is insuff ient

or due to the changing type of the governing equations.

5.5 PRACTICAL APPLICATION AND RESULTS

* * SINGLE AIRFOILS

In the present work, all three commonly used types of grids - H-type, O-type

and C-type - are generated. The complete procedure is given for O-type of

* grids, and the other two briefly explained.

First of all, let us consider the transformation of a two-dimensional dou-

bly connected region D bounded by two closed contours onto a rectangular

I I
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region D, as shown in fig. 18 (the body contour and outer boundary are

transformed, respectively, to the constant 77 - lines forming the bottom and

top sides of the transformed region). Let G1 represent the inner boundary,

G 2 outer boundary, D physical plane, and D1 transformed plane. In order 0

to connect G1 and G2 it is necessary to make an arbitrary cut between G3

and G 4.

Conceptually this can be viewed as an opening of the field at the cut

and then a deformation into a rectangle. Now, let G1 map onto G , G2

onto G2, G 3 onto G* and G 4 onto G4. G and G2 are constant 77-lines in

the transformed plane. Contours G 3 and G 4 which connect the contours G1

* and G2 are coincident in the physical plane and form left and right sides of

the computational plane with x and y values given as pre-assigned data.

To summarize, at this point we are given "initial" conditions on the inner

boundary, a constraint condition for the outer boundary and boundary

condition on cut as follows

Y [ =] 7(7 ) ] 71 E G (72)

[ x ] -" f[(l, 7), (2, q)11 [;C, 71 E 3, e 4 (74)

The functions f( ,ri),f2(C, /),f3( ,77),f4( ,7) are determined using the

known shape of the inner and outer boundaries G1 and G2 , and the spec-

ified distribution of C thereon, while the function fs is determined by the

shape of the cut, and distribution of C lines thereon. •

The boundary fitted coordinate system generated by solving (68, 69)

has a constant q line coincident with each boundary in the physical plane.

4 S
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The constant lines may be specified as desired around boundaries,
,N since the assignment of the C - values to the (x, y) boundary points via

the functions fl, f2, f3 and f4 is arbitrary. Control of the radial spacing of

the = constant lines is very important because of its influence on non-

uniform grid spacing terms in the finite difference equations (65). Knowing

boundary conditions (73, 74) and initial conditions (72) we can calculate

the grid by marching from inner to outer boundary.

Figures 19 and 20 show 0-type grids about NACA 0012 and Karman-

Treffiz airfoils generated in this way. The grid points on the outer boundary "

are equally spaced along a circle with radius of 1.5 x chord length. Orthog-

onality control is applied in the vicinity of the airfoil surface. Grid size for 0

NACA 0012 is 61 x 28 (CPU time 0.258 sec.) and for Karman - Trefftz

airfoil 41 x 16 (CPU time 0.189 sec.). Fig. 21 shows an O-grid generated

about a NACA 0012 airfoil with strong clustering in vicinity of the air-

foil surface. This type of coordinate line clustering can be considered for

".4 viscous and layer problems.

Figure 22 shows H-type grids without orthogonality at the airfoil surface

and generated in the same way. The horizontal line of symmetry is used as

initial data. Distribution of points on the outer boundary is the same as on

the line of symmetry. Essentially, the grid is equivalent to that obtained by

an algebraic grid generation scheme applied by Johnson [34] for transonic

flow calculation about a single airfoil in channel conditions. The grid size

is 41 x 20 and solution is obtained after 0.126 sec of CPU time. The grids

above the airfoil were first generated starting from the airfoil surface to

the top boundary, and then grids below the airfoil were generated by the

same procedure. The best grid resolution was obtained by specifying a

nonuniform spacing function F in the computational plane corresponding

Iorrespondin
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to Az. in the physical plane. Fig. 23 shows H-grids about a NACA 0012

airfoil with strong clustering and orthogonality of grid lines in the vicinity

of the airfoil surface. Obviously, both grids car be used for flow analysis

about an airfoil in wind-tunnel conditions.

Fig. 24 indicates C-type grids similarly generated. In this case the wake

position was taken to define the initial condition for resolution of grid lines

from the trailing edge of the airfoil in the downstream direction. The outer

boundary is uniformly discretized and the point distribution downstream

from the trailing edge is identical to that on a wake. The grid size is 73 x

16 and CPU time 0.231 sec.

0 Opening the field at the cut (fig. 25) the two members of the pair of

segments forming the branch cut are similarly directed in the transformed

region, and consequently points located at a vertical distance below the

segment 1-2, at a horizontal distance to the left of point 2, coincide with

points at the same vertical distance above the segment 4-3, at the same

V' horizontal distance to the left of point 3. In this case, varies to the

right on the upper side of the cut, but to the left on the lower side. The

direction of variation of r also reverses at the cut, so that although the -

type and shape of both lines are continuous across the cut, the direction of

variation reverses there.

In all cases shown, for O-type and C-type grids the nonuniform spacing
6. functions F were set to ds = V Ax? + Ay? on the j - 1 grid line, while

nonuniform spacing of the r7 coordinate was enforced by use of trigonometric

sine functions to produce clustering in desired regions.

6 '
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. MULTIPLE AIRFOILS

The basic ideas and procedure introduced for single airfoils can be extended

to regions containing more than one body, i.e., multiconnected or multi -

body configurations. An example of the transformation for two airfoils is
given in figure 26. The bodies are connected with one arbitrary cut and

an additional arbitrary cut joining one of the body contours to the outer

boundary. The physical plane contours G1 - G8 map respectively onto the

contours GI - G; in the transformed plane. The conceptual opening here is

as follows: the pairs of segments (1-2,7-8) and (3-4,5-6) are the branch cuts,

which form re-entrant boundaries in the transformed plane. In this case,

points outside the right side of the transformed region coincide with points

inside the left side, and vice versa. The coordinate type and direction are

continuous across the cut. Points below the bottom segment 3-4, to the

left of point 4, coincide with points above the segment 5-6 to the right of 5

point 5 in the transformed plane. As those arbitrary cuts represent pre-

assigned data for grid generation in the physical plane, there are a number

of other possibilities for placement of the two cuts on the boundary of the

transformed region.

In the present work, the procedure was applied to two NACA 0012

airfoils with flap at different angles. Examples with flap angle at 0 degrees

* and 25 degrees are shown in figures 27 and 28, respectively. Figure 29 gives 5

* more detailed grid line distribution for two NACA 0012 airfoils with flap

angle of 25 degrees. The grid size is 87 x 30 and CPU time 0.623 sec. The

results show very good resolution of grid lines and clustering effects of the

nonuniform spacing terms.

41j
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. APPLICATION TO ARBITRARY CONFIGURATIONS

The method is, with the same basic ideas, applied further to cascade grids

and configurations with two circles and a circle with an airfoil. O

The first case demonstrates the ability of the parabolic method to satisfy

outer boundary conditions a very small distance from the inner boundary.

In this case the outer boundary was formed midway between neighboring

airfoils. In fact, this cascade grid represents a composite system that can be

extended upstream and downstream to infinity by two independent Carte-
sian systems similar to that given by Eiseman [7]. The main advantages of

the composite system are that it can be used for highly - staggered, closely

- spaced airfoils and avoids severe mesh distortion or growth that would

occur at higher upstream or downstream extensions of the basic O-grids.

The mesh in fig. 30a covers everything except triangular regions at the

corner points that result from the demand for nonsingularity. Obviously,

gx this system is to be applied only when these regions are sufficiently small

and/or are located in places where the solution is slowly varying. An al-

ternative approach is to relax the demand for nonsingularity and fill in the

uncovered regions as in fig. 30b.

The configuration with two circles (fig. 31) shows the clustering ability

of the method. Essentially the grids of this problem have very similar

* behavior to the example using an elliptic generator given by Thompson,

Thames and Mastin [16].

The configuration containing circle and airfoil shapes (fig. 32) indicate

the ability of the parabolic scheme to handle grid generation in a field with

multiple bodies having very different geometry. The example can be applied

for grid generation about an arrow wing - body configuration.
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5.6 COMPUTATIONAL EFFICIENCY

The parabolic scheme produces viable grids in one outward "iteration"

sweep. It uses a tridiagonal solver that is very time efficient. In order

to investigate the computational efficiency of the parabolic scheme as a

function of grid size we compare results with those obtained by the elliptic

scheme with clustering functions. Results are given in Table 1 and show

that the parabolic scheme is highly efficient. Morever it exhibits very little 0

dependence on the distance of the outer boundary. In all cases for a single

NACA 0012 airfoil CPU time includes forming the inner boundary, outer

* boundary and grid generation. In all other cases CPU time is for forming

of the outer boundary and grid generation. All presented examples were

run on the CDC 170/750 Dual Cyber Computer of the University Texas at

Austin.

5.7 LIMITATIONS OF PARABOLIC SCHEME

We find that the most important and the most sensitive factors influencing

the method are the distribution of points on cuts and specification of the

nonuniform spacing terms F and gj. In order to obtain good resolution of

grid lines in the cut region for varying nonuniform spacing terms F and gi

in (68, 69) with j, the F and gj should be given as functions of the point

* distribution. In this case clustering of the grid lines in the entire physical

field is controlled by grid point distribution on the cuts. Otherwise we can

have excessive skewness of the grids near the cuts. If we use constant values

of F and gj, to obtain different clustering of the grid lines we need several

sweeps through the computational plane changing F and gj in each sweep.

In application to multiple bodies we have additional cuts that connect

S 0
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the bodies. In the case of asymmetric bodies we found that uniform spacing

of points on cuts is most appropriate, since otherwise overlapping may

occur. For bodies symmetrically situated in the physical plane, these cuts

are not critical and the point distribution on them may be arbitrary.

5.8 CLUSTERING OF POINTS IN GIVEN
REGIONS

The distribution and clustering of points along the airfoil contour, cuts,wake

and "inlet" and "outlet" of H-type grids are controlled using a trigonometric

sine function. We have two known parameters; the coordinate location of

*i a point and the number of grid points that will be located up to the known 0

point. The selected function is

y = L[x + FAC(Nrz)] (75)

where x linearly varies from zero to the length of the interval, FAC is a

factor that determines the amount of clustering, N is 1 or 2 (for N = 1

we have a single and for N = 2 a double sine wave), and L is the physical

length of the interval. 0

6 CONCLUSIONS

* The present work shows that high quality grids can be generated by a mar-

ching solution of parabolic partial differential equations. The parabolic dif-

a,. ferencing scheme has been implemented for the generation of two-dimensional

grids about single and multiple bodies. The method has demonstrated good

spacing and angle control, and ability to generate smooth grids for finite

difference computations in CFD.

k • I
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The approximate orthogonality of the grids is enforced by introducing

a fictitious outer grid contour. This shifted outer grid contour is computed

by first computing the the slope of the airfoil surface and the distance from

inner boundary points to corresponding outer boundary points.

On the basis of comparison of results with those obtained by an elliptic

scheme, the method is demonstrated to have high computational efficiency

and gives good resolution of grid lines. The present method appears stable.
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Part II

POTENTIAL AIRFOIL
ANALYSIS AND DESIGN

7 INTRODUCTION

The most popular and practical applicable methods for potential airfoil

0 analysis and design are so called surface singularity or panel methods. The

basic ideas of the panel methods introduced in the solution of arbitrary

potential flow problems involve combining classical potential theory with

contemporary numerical techniques. The classical theory provides a means 0

to reduce flow problems to a surface integral equation relating boundary

conditions to an unknown singularity distribution. Numerical techniques

are then used to calculate an approximate solution of the integral equa-

tions. The procedure involves representing flow boundaries by surface el-

ements (panels) on which potential flow singularities are distributed. The

physical boundary condition is that the normal velocity is specified on all

surfaces so that the mathematical formulation becomes a Neuman problem

for Laplace's equation.

For a given geometry of an airfoil section the potential flow analysis

methods provide surface velocity and pressure distribution and thus the lift,

* the pitching moment and other aerodynamic characteristics. The methods 5

should be reliable and accurate because they are used as the first step in the

50
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design of new wing sections. Generally, exact (i.e., conformal mapping) and

surface singularity methods provide a good means for single airfoil poten-

tial flow analysis and design. However, for multicomponent airfoils exact

methods produce mainly test cases, and the only practical design methods

are based on surface singularity techniques. In a design mode we usually

specify velocity or pressure distribution. Therefore, the performance of the

system specified by design or inverse solution gives the geometry that will

produce that performance. The inverse design is basically an iterative pro-

cess that provides adjustments to both designed geometry and the required

surface velocities at each iteration. So, we can include different constraints

* that frequently occur in the design of airfoil sections. 0

7.1 REVIEW OF POTENTIAL METHODS

The most widely used panel method is that of Hess and Smith [351 based

on distribution of sources and sinks on the airfoil surface combined with

a vorticity distribution to generate circulation. Improved solution based

on a higher-order panel formulation was developed by Hess [36, 37, 38].

The main idea in development of higher order panel methods was to reduce

panel density for a given solution accuracy and to reduce computing cost.

However these advantages have not been achieved. For example, Maskew

[39] demonstrates that a low-order panel method based on piecewise con-

stant doublet and source singularity applied to general configurations for

comparable density of control points give comparable accuracy to higher-
order solutions. Bristow and Grose[40] introduce panel methods based on

* Green's third identity with constant or linear source distribution and linear "

vorticity distribution on flat panels and demonstrate very efficient inverse

and mixed analysis/design for single and multicomponent airfoils. For two-

g8
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dimensional configurations a very popular method is the stream function

approach based on constant or linear distribution of vorticity. For exam-

ple, Ormsbee and Chen [41] use this method for multi-element airfoil design

and use third-order Langrangian interpolation to determine surface points.

Further, Kennedy and Marsden [42] introduce an additional control point

a finite distance from the trailing edge to satisfy the Kutta condition and

determine surface points using cubic spline or linear projection. This type

of Kutta condition provides reduction in panel density and gives very good

results. The method is also used as a starting solution in design of single

airfoils in viscous incompressible flow by Dutt and Sreekanth [43] and for

analysis and design of single airfoils in transonic flow by Greff and Man-

tei[44]

Instead of superposition of potentials due to surface singularities, a dif-

ferent type of boundary integral equation can be obtained by applying an

appropriate Green's formula and fundamental solution to relate integrals

over the interior of the domain to integrals on the boundary. Then, in-

troducing a finite element expansion on a discretization of the boundary

domain, an approximate solution of the boundary integral equations can be

obtained. This procedure has been termed the boundary element method

(Brebbia [45]). The method has been, with theoretical development, suc-

cessfully applied to lifting airfoil calculations by Carey and Kim [46]. The

major conceptual difference between panel and boundary element meth-

ods is; the panel methods are based on superposition of surface singularities

with discrete satisfaction of boundary flux conditions while in the bound-

* ary element methods one uses a finite element expansion and a discrete

approximation of the boundary integral equations.

Conformal mapping techniques have been successfully applied by Halsey

I I
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[9] for analysis of multi-element airfoils. Any number of airfoils are trans-

N formed to the same number of circles by successive application of a method

for mapping a single body to a unit circle. Then, the flow about multiple

circles is analysed using multiply-reflected doublets and vortices. Saddhoo

and Hall [47] use the method of images and calculate the analytical solution

for an inviscid incompressible flow past four arbitrary circles which are then

conformally mapped onto airfoil sections.

In the present work we use the stream function approach of Kennedy

and Marsden [42]. However, in the design mode we calculate the actual

position of the trailing edge and then use linear interpolation to determine

* surface points. In this way it is possible to avoid saw-shaped airfoils that -

can result from propagation of small errors due to selection of additional

trailing point as the actual trailing edge of the airfoil. The method is

compared with several panel methods in analysis mode and demonstrated

approximately to be of second order accuracy.

7.2 GENERAL CONSIDERATIONS

The first step in the solution of potential flow over single or multi-element 0

airfoils is to define elements that describe the airfoil surface. We select a

certain number of points on the airfoil surface and connect those points

with straight or curved lines which define the panels (fig. 33).

Next, we (1) represent the body surface and its wake by a distribution of

sources, doublets, and/or vortices of unknown strength, (2) parameterize

the singularity strength (i.e., represent it by a polynomial), (3) enforce

* an appropriate boundary condition for the velocity field at control points,

and (4) solve the resulting system of linear algebraic equations in unknown

singularity strength.
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In order to be able to treat lifting bodies it is necessary to introduce

circulation, the strength of which is determined by the Kutta condition.

Using an analysis of the potential flow near a sharp convex edge (Moran

[48]), there are two possibilities: (a) the velocity at the trailing edge is

infinite; and (b) the flow leaves the sharp trailing edge of an airfoil section

in a smooth fashion. From the requirement of finite velocity at the trailing

edge, the second alternative gives the following practical applications of

the Kutta conditions: (1) the streamline that leaves a sharp trailing edge

is an eztension of the bisector of the trailing edge, (2) the flow speeds on

the upper and lower surfaces near the trailing edge are equal at equal dis-

* tance from the trailing edge, and (3) if the trailing edge is not cusped, the 5

flow stagnates there. The most commonly used Kutta condition in surface

singularity methods is that airflow leaves the trailing edge smoothly. This

Kutta condition can be obtained by equating the trailing velocities over the

upper and lower surface elements adjacent to the trailing edge,

vtJ + vt = 0 (76)

This form of Kutta condition results in zero loading on elements nearest

the trailing edge. In order to minimize the error due to this, we have to

use very small elements in the trailing edge region. Other possibilities are

to use an additional control point a finite distance from the trailing edge orS

to approximate the tangential velocity component at the trailing edge by

two- or three-point quadratic extrapolation.



55

8 MATHEMATICAL DEVELOPMENT
OF PANEL METHODS

Consider compressible, steady and irrotational flow of inviscid fluid in three

dimensions. The fact that the flow is irrotational implies the existence of

a velocity potential = i7. The continuity equation then reduces to the

full potential equation

(- + ( )-,,,+ (1 - - ,''+ +
aa a a2
a2a lx 'y +  a2 1byz + a '  (77)

For slightly compressible flow we separate terms to

" = f (4) (78)

Where f corresponds to the nonlinear terms. A simple Taylor iterative

method then involves repetitive solution of the Poisson equations

A -(k) = f((k-l)) (79)

Further, for incompressible flow we have the familiar linear problem

A = 0 (80)

or in terms of stream function 'I'

A, 192,Q-+- 0 (81)
19X 2  OY2

* Once D or T is determined, the velocity field can be found as

U 04P = 9 (82a)
0

, X O
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V 04 a (82b)

In order to solve a potential flow problem for incompressible flow, eq. (80)

or (81) should be discretized with specified boundary conditions. We first

convert the governing equation into an integral form. It is known that any

incompressible flow can be represented by a distribution of sources and

vortices over its boundary surface. To make the potential D single valued,

we employ a branch cut to the far field (infinity). The body surface, outer

boundary and cut surface are shown in fig. 34.

The associated boundary conditions are

• =0 (83)
an

on the airfoil surface SB and

"V as r 2 +y2e- (84)

in the far field. V,, is the specified uniform flow at infinity. On the outer

boundary So, the boundary condition (84) can be approximated as

an=_0- (85)
7] On =

Where 6 is the unit vector outward and normal to SB.

For lifting airfoil problems, the unknown circulation IF is determined

from the Kutta condition. For any simple closed contour C enclosing the

,- airfoil the circulation r is defined as

r 6 d4F = t(U) - D(W) (86)

Where 6 is the velocity and U, W are a pair of adjacent points on either

side of branch cut Sc. Across the cut we have

[4bl=r on Sc (87)

0

0 K
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and the velocity is continuous, so

1 -0 on Sc (88)

Where denotes the jump across the branch cut. Now, let us introduce a

source of unit strength at some point P in the integration domain A (i.e.,

flow field). In this case the fundamental solution of equation (80) satisfies

AX = 6(X - , Y - 77) (89)

and is X = -lnr; i.e., the potential of a source of unit strength. Where

Sr = /(X - C)2 + (Y - ,7)2

6 is the Dirac delta function, and

C, q are local coordinates of an arbitrary point in the integration

domain A.

Multiplying eqs. (78) and (89) by X and ¢, respectively, and subtracting,

we get

,D¢72X- XV2 = &D - Xf (90)

-" The divergence of the left hand side of eq. (90) is

V* VX + V - XV V4 - VX 7' &D - Xf (91)

or

V ('Vx- XVD)= 6- Xf (92)

Integrating over the area A and applying the divergence theorem, we get

I(64 - Xf)dA = -X (Vx- X ) dS (93)-I
S
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Integrating the right-hand side of eq. (93) by parts

&MdA X) -- dS + xf dA (94) :

JA JS O A

and evaluating the right side of eq. (94), we get the basic equation for panel

formulation as follows

S77) = i(xn - dS (95)

where the surface S consists of three components S= SB + Sc + So

SB is the body surface immersed in the flow

* Sc is a two-sided surface on the cut 0

So is the surface of the outer boundary

and/3= (0 is the interior angle).

Hence, the governing equation becomes
i3~ )a~ 0x)

(x =b LX) ( - S s(96)=JSi.SC+So On On

Where, /0 = 0 if (C, 77) is outside of the boundary, /P = if (, r) is on a

smooth boundary and /3=1 if (C, 77) is inside the boundary.

8.1 POTENTIAL BASED PANEL METHOD

. TOTAL POTENTIAL

If (D in eq. (80) represents a total potential, then on the outer boundary

*So we have

-(D = VXcos a + V,,, sina (97)

where a is the angle of incidence of the flow.* S
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Hence, the line integral becomes

D V(Xcosa + Y sinoa) + lb OX) dS (98)

Since O&/On = 0 on a solid surface, integrating by parts, we get

03d=Voo(Xcosce+Ysina)+ [ ¢ dS- X[ ]-dS (99)
BOnn an

where [ ] =+ - 0- represents the potential jump across the wake that is 0

equal to the circulation about the airfoil. In fact, 2 may be considered as
.,. a doublet of unknown strength so that equation (99) represents a doublet

panel integral equation that is important for the development of vortex
*- panel methods used here in numerical experiments.

* PERTURBATION POTENTIAL METHOD

If 0 in eq. (80) represents the perturbation potential, then velocity can be

written as

-''.' + Sp (100)

In this case the potential vanishes on So, so that the line integral becomes( OxOI fs+ "-x"

13o = LX - a x) dS ( LX- o-X) dS (101)
SB+SC an On fsB+ SC On

Where o- = - represents source strength and is given as a boundary con-

dition on the airfoil surface as

n = - (102)

* Equation (101) represents a souice-doublet panel equation. 0

, VORTEX METHODS

% •

* S
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A surface doublet distribution of density p can be replaced by an equivalent

surface vortex distribution. So, vortex based panel methods can be devel-

oped using eq.(94). Integrating by parts and setting y = 8, f 2xdS = 08 n

and 0 0 (since [D ] is constant along the wake), we get -

0-D(l, 7) = VOO(X cosa + Y sina) - j/ 'O dS (103)

or in terms of a normal velocity at each control point and with 8 = ., the

vortex integral equation becomes S

6 = 2 7S-dS (104)
JSB8 On

Using the relation between doublet and vortex distributions we can develop

* the basic equation for source-vortex panel methods. Recalling the doublet 6

and source equations (99, 101) and knowing the potential jump [ 4 )=
4+ - =and 0 on the wake, we get

Integrating by parts,

= SB dS (106)

where r = a is the unknown source strength and 7 -y the unknown

vortex strength.

As a function of the normal velocity at each control point,/, 00 / 0
•l 9VB = -2 Y ndS-2 oAndS (107)

To determine the appropriate boundary integral solution to (80) or (81) it

is necessary to discretize the basic panel equations and introduce the Kutta

* condition as a constraint. A detailed discretization for the panel method 6

with linear distribution of vorticity and a curved panel method is given in

appendices A and B, respectively.

00

* 0

, ' ,' -' '
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9 STREAM FUNCTION APPROACH

As there is no normal velocity at a solid surface, each solid surface is a

streamline of the flow and on the corresponding streamline T is a constant. -

Thus, for a multi-airfoil problem the boundary conditions for eq. (81) on

an airfoil component k can be written as

IQ = Tk (108) 0

For computation it is convenient to have all equations in a nondimensional

form, where distances are dimensionless with respect to the chord length

c, velocities with respect to the free stream velocity V ..and the stream

functions with respect to the product V,,, c. For a uniform flow incident to
the positive x - axis at an angle of attack a the dimensionless form of the

stream function becomes

?,bk = ysin a - xcos a (109)

When the airfoil surface is replaced by a vortex sheet, the sum of the stream
function for a uniform stream and the stream function for the vortex sheet

should be constant on the airfoil surface. This can be represented by the

integral equation (fig. 35) as
?kk = y(S)cosa- X(S)ina- 1 7 (S')n(S,S')ds' (110)

where:

k is the unknown stream function value on k - th airfoil section

-y(S') is the vorticity strength at arbitrary point S',

r(S, S') is the distance between points S and S'

6I .

]S
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x(S), y(S) are coordinates of the point of interest S

s, s' curvilinear coordinates measured along the airfoil surface starting at

the trailing edge

To solve equation (110), the airfoil surface is divided into N small sur-
face elements - panels, and the integral is approximated by a summation.

Applying eq. (110) at a control point Ci we obtain

k + - -(Sj)lnr(Ci, Sj)dsj = ycicos a - xcisina (111)

4 Assuming that we have N control points C, the problem of potential flow

over an airfoil section is reduced to that of solving these N simultaneous
.. equations.

The most immediately required result is the velocity distribution on

the airfoil surface. Since the velocity inside the airfoil is equal zero, the

discontinuity in tangential velocity across a vortex sheet is equal to the

density of the vortex sheet. This implies that, in solving eq. (111) for

y(Sj), we directly obtain the velocity distribution on the airfoil surface.

In application of this method, we assume that we have straight panels

and constant (or linear) distribution of -y over each element. Then we get

N
?Ok + 1-y,; ij = RHS, (i = 1,2 .... N) (112)

0 j=1

where Kij is the influence coefficient of the element j on control point i and

RHS is the right hand side of equation (111) evaluated at control point i.

__ Using the notation of fig. 36, the influence coefficients can be written S

=Kij = ln[r(Si, Sj) ds (113)

u.
%! .
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K = [!-biln(ri) + b2ln(r2 )] - A

+ -[tan - tanb for iA j (114)

and

Ii = _[ln(- 1] for i =j (115)

where

aAS = sj+l - $j

r = (j - Xc,) 2 + (yj 1 - Yc,)

- = (x1+1 - ZC,)2 + (Yi+i - yc,) 2

bi 1-(X, - XC,)(Zj 1 - Xj) + (y, - YCJ)(Ya+i - yA)
1

b2 = j[(Xji+ - XC)(Xj+l - Xj) + (yi+i - yC,)(yi+ - Y)

b3 = 1 (j - xc,)(Yj+l - Yj) - (Yj - Yc,)(Xj+ - Xl]

The vortex strength -yj at the intersection of two panels is determined as

= j-l(Sj - Sj- ) + 'yj(S 1 +1 - Si) (116)
53+1 - S-

where j : 1 and N.

It can be seen that Kij and RHSj are functions of the coordinates and

the angle of attack. If we have M airfoil sections with N control points,

the system of equations (112) becomes a set of M + N equations for N

unknowns yj and M unknowns Ok. M additional cquations are determined

using the Kutta condition for each airfoil section. For this purpose we use

an additional control point at the extension of the bisector of the trailing

edge and assume that the streamline through other control points of a

t'0

g _ 0
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given section passes through this point, too. Applying eq. (112) to these

additional point CT, we can write the Kutta condition as follows

N

lkk + , YIKT.J = RHST (117)

Now, the complete system of equations for an airfoil section can be written

in matrix form as

K,,I K,N 1 7 RHS

(118)
KN,1 KN,N 1 7N RHSN

Kutta condition l RHSN+l -

Solution of the system (118) gives us a nondimensional vortex density -yj

and the stream function 0. Now, the pressure coefficient at any point on

the airfoil surface may be obtained from the velocities via the equation

C,(X2, Y) = 1 - =v2 = 1 (119)Cpxjy)=1 V.o -73

When this method is extended to multi-component airfoils, we have a dif-

ferent value of the stream function for each airfoil section. For example, -

if we have a common configuration slot - main airfoil - flap, the matrix

S S
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equation can be written as

K1,1 K1,3N 1 0 0 71 RHS1

KN,l KN,aN 1 0 0 IN RHSN
IKN+1,1 KN+I,3N 0 1 0 Y'N+l RHSN+l

K2N,l K2N,3N 0 1 0 72N = RHS2N 0
K2N+ij K2N+iN 0 0 1 72N+1 RHS2 N+l

I3NJ If3N,3N 0 0 1 73N RHS3 N
* Kutta condition for slot '0 RHS3N+l

Kutta condition for main airfoil 02 RHSN+2

L Kutta condition for flap J 13 RHSN+3 (j
(120)

It can be seen that only right hand sides of systems (118) and (120) include

the angle of attack c. If we want to determine flow at different angles

of attack, it is necessary to determine coefficient matrix Kij once, and

recalculate RHS as a function of the angle of attack.

9.1 A DESIGN METHOD

In analysis mode, values of coordinates xi and yi and influence coefficients

Kij are given by the airfoil geometry and systems of equations (118) and

(120) solved for the surface velocity distribution 7j. However, for the airfoil

design problem either values of surface velocities yj or pressure distribution

are given and the governing equations are to be solved for the airfoil geom-

* etry xi and yi. It is not possible to obtain a direct solution for geometry

but instead we may apply an iterative procedure in which the geometry of a

starting airfoil section is gradually modified until the desired velocity (pres-

V il'S*

p' " , J . """"","'" -,.. - . . '=- . ,' ; 
n ' " V W ! " "
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sure) distribution is achieved. Substituting the desired values for stream

function OD and velocities in eqs. (112) and (117) while retaining the

Kij from the previous design iteration allows solution for the geometry of

a modified section. During the iteration process, the xi coordinates may

be kept constant and new values of y, calculated. For single airfoil design,

the value of a stream function 0 is arbitrary since its effect is only to move

the airfoil up or down relative to the x - y coordinate system. However,

* in the case of multicomponent airfoils, the difference in stream functions

between any two components determines the flow through the slot between

the components, and specification of the stream function values depends on

* the type of design (i.e., given geometry of one or more sections - design of

other components; or design of all components). To start the design pro-

cess it is necessary to define an arbitrary basic airfoil shape to generate the

initial set of influence coefficients Kii. After that the influence coefficients

for each new iteration are calculated using the coordinates obtained from

previous iteration. For example, at iteration m of the design procedure for

control points we have

1 NY7=Cs xsi j jy] i=l1,2 ... N (121)

and for the trailing edge points

1 N
y = C [XTsina + ekf + j K mTI (122)

Since the location of the trailing point is very close to the trailing edge we

may assume that yT is the location of the actual trailing edge. In this way

*! after each iteration we have the location of one point that determines the

remaining points on the airfoil surface. The iteration process ends if either
IiL
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condition

maxi[ly? - yi-'I] Tr (123)

or

max [jC - C,' r (124)

for tolerances Tr, r2 is met. During the design process, the control points

of the airfoils are adjusted along vertical lines xi = const. This implies

that we can not have adjustment of coordinates parallel to the freestream

direction. In practical applications this limitation is relaxed because we

* have a prescribed chord length and we always can have an arbitrary x -

coordinate distribution.

The coordinates yi that are obtained from equations (121 and 122) are

panel control points. The points on the airfoil surface can be determined

by passing a curve through control points and interpolating or projecting a

straight line through the control points using the trailing point as an actual

trailing edge of an airfoil. In the latter method, however, a small error due

to incorrect location of the trailing edge can propagate during iteration and

produce a saw-shaped airfoil that can not satisfy the required pressure or

velocity distribution. In order to avoid these difficulties, referring to fig.

37a, after each iteration we compute the actual position of the trailing edge

using the first and last control points on the airfoil, x- coordinate of the

4 trailing edge of the starting geometry and the additional trailing point. In

this way we can compute the coefficient matrix Kii more accurately and

use the actual trailing edge as starting point for determination of the airfoil

surface. For example, referring to fig. 37b, using the equation of a straight

line through two points P (trailing edge) and C (the first control point)

we can determine location of P2 (the second point on the airfoil surface),

I i
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and so on.

10 DISCUSSION OF RESULTS

10.1 AIRFOIL ANALYSIS

For the analysis we selected three characteristic single airfoils: cambered

Karman -Trefftz, cambered Joukovski and a conventional NACA 2412 air-

foil. We also consider multi-component airfoils.

o EXAMPLE 1: Cambered Karman - Treftz airfoil at a = 5 (fig. 38)

For this test case we use the stream function approach with 41 panels,

source vortex panel method and higher order ( curved ) panel method

with linear distribution of vorticity with 60 panels. It can be seen

that the source vortex method gives a larger pressure peak at the

leading edge on lower surface in comparison with an exact solution

obtained by conformal mapping.In fact, neither surface singularity

method gives a completely accurate solution on the lower surface

, but the curved panel method and stream function approach can

handle leading and trailing edges approximately with the same order

of accuracy.

e EXAMPLE 2: Cambered Joukovski airfoil at a = 20 ( fig. 39)

For analysis of this airfoil we use the stream function approach with

41 panels and a higher order vortex panel method with 60 panels. It

can be seen that both methods give very good agreement with exact

* solution. As in the first example, the cambered Joukovski airfoil gives S

different velocities on upper and lower surfaces ( high loading near the

trailing edge) that the Kutta condition (76) can not satisfy. Neither

•K %6
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source vortex nor linear vortex panel method applied here with this

Kutta condition can handle the present airfoil with given number of

panels, successfully.
to

" EXAMPLE 3: NACA 2412 airfoil at a = 8' ( fig. 40)

This test case shows a comparison between linear vortex and stream

function panel methods with 40 panels. It can be seen that both

methods give approximately the same solution. The test case also

proves that for airfoils with very small camber,trailing edge velocities

are almost the same and the Kutta condition (76) can be applied.

" EXAMPLE 4: William's configuration at a = 00 ( fig. 41) -

For analysis of multicomponent airfoils the most popular test case

is William's configuration with flap at 100 or 30' . In the present

example we use the configuration with flap at 30* . The problem is 0

solved with 41 and 60 panels on each section.It can be seen that a

better solution was obtained with 41 panels. The solution on the flap

compares well with the exact solution, while on the lower surface of

the main airfoil there is a small difference between panel and exact

solutions. The same problem is observed by Seebohm and Newman

[57] using a linear vortex panel method with quadratic extrapolation

of the Kutta condition.The present method gives approximately the

same form of solution on the main airfoil but gives a better solution

on the flap.

* EXAMPLE 5: Arbitrary two component configuration

Fig. 42 indicates an arbitrary two component configuration of two

NACA 2412 airfoils. Flap chord is 30% of the main airfoil chord with S:
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angle of deflection of 10°.The configuration is analysed at different

angles of attack: 1 , 5 and 90. The form of solution is similar to that

obtained by Moran, Cole and Wahl [51).
1

10.2 AIRFOIL DESIGN

10.2.1 SINGLE AIRFOIL DESIGN

The iterative design procedure should converge on an airfoil design which

gives exactly the required velocity distribution. For this purpose we apply

velocity and coordinate convergence conditions

*E = iun - ul < f, (125a)

= - y - I <Ei (125b)

where superscript m indicates iteration level and R the required velocity

distribution.

To start the design process it is necessary to specify a target velocity

distribution. Convergence depends on how close a starting geometry is to

the target geometry. If the starting geometry is far from the target design

process will take a larger number of iterations.Two cases were tested.

9 EXAMPLE 1: In this example we attempt to design William's main
I. aiifoil starting from a NACA 0012 airfoil ( fig. 43).There is a big S

difference in trailing edges and also a big difference in pressure dis-

tribution in this region. Using the known velocity distribution, forty

panels were used for discretizing the starting geometry. After 14 it-

* erations the velocity convergence criterion (c, = 0.001) was satisfied S

and the solutions differ only slightly at the trailing edge.

NS

VV



~N

71

EXAMPLE 2: NACA 2412 ( fig. 44) designed from a NACA 0012

at the same angle of attack (a = 8o). The starting geometry was

very close to the required geometry and after 9 iterations the coordi-

nate convergence criterion was satisfied. The design process was very

stable and very accurate.

10.2.2 MULTICOMPONENT AIRFOIL DESIGN

In multicomponent airfoil design one can consider: (1) design of all compo-

nents, (2) given main airfoil - design other components, and (3) given flap

or slot - design of the main airfoil. The second case is the most interesting

* and practical because of several requirements that should be satisfied in 0

design of high lift devices. These requirements are: (a) the flap and/or slot

must retract into the main airf, i. to form. a good airfoi! for cruising flight,(b) tfeio alesshould provide esnbeices of lift, and c)
the gap between main section and flap should provide enough energy to push

the separation point of the boundary layer as much as possible towards the

trailing edge of the flap.

e EXAMPLE 1: Design of William's configuration with flap at 300 (
pm |

fig. 45)

The required velocity distribution was given from the exact solution at

a = 00. The starting geometry was composed from a NACA 0012 as

main section and from NACA 0009 as flap at zero angle of deflection.

It is important that the initial flap angle and spacing are not critical

because these parameters are quickly adjusted by the design process.

Since the x - coordinatcs are not altered during the design process,

the flap chord will change if the flap deflection is different from the
".p . ,,_,..

0 0
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starting dcflection. For example, if a particular final flap chord is

desired, we can determine angle of deflection and set starting flap at

that angle.

The required surface velocities on both components were supplied
together with stream functions 01 and 02 on the main section and

flap, respectively. Discretization employed 80 panels - 40 on each
section. The design test case is very difficult because of a high velocity

*-. peak at the leading edges of both sections. Very small deviation in

It can be seen that pressure on the flap is very close to the required

* pressure distribution and that at the leading edge of the flap the

pressure peak is a little overestimated. On the main section we have

good agreement in pressure on the upper surface and at the leading

and trailing edges, but underestimated pressure on the lower surface.

e EXAMPLE 2: Here we design the same configuration as in the first

example but using the main William's airfoil and NACA 0009 as

starting geometry (fig. 46). That is, we want to design a flap with
a fixed main airfoil. During the design process the velocity distribu-

tion on the main airfoil is assumed to be unknown and is replaced

by the values computed in the previous iteration, while geometry and
* location of the main section are held constant. It can be seen that

after five iterations the pressure distribution on the flap is close to

the required values but there is a big difference in pressure distribu-

tion on the main section. The reason is a relatively slow change of

pressure distribution on the flap that can also be observed in fig. 42

for two NACA airfoils at different angles of attack. Final solution

'..
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was obtained after 9 iterations with good agreement with pressure

distribution in analysis mode (fig. 41)

11 CONCLUSION S

Surface singularity methods are a good means for solution of potential flow

problems. They can handle both single and multicomponent airfoils in

analysis and design processes. The stream function approach appears to

be very stable and a simple panel method applicable for practical initial

analysis and design airfoil problems.The method provides reduction in the

number of panels in comparison with other surface singularity methods and

the best results were obtained with 40 - 60 panels per airfoil section.The

.1. modified approach for computing the actual position of the trailing edge

provides designed airfoils with smooth shapes and stable design process. ('
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APPENDIX A

12 VORTEX PANEL METHOD WITH LI-
NEAR VORTEX STRENGTH

The circulation density on each panel varies linearly from one corner to the

other and is continuous across the corner

.,= :- + (71+1 - ^) (126)

Recalling the basic equation for the vortex panel method, the velocity po-

tential at the i -th control point is

* N0
4'(xi y' - l(xicosa - yisince) - 1 iLt an-'( YC - 7/Cj) ds (127)

Applying the boundary condition

49(Xi,yc,) 0 i =1,2...N (128)

and carrying out the differentiation and integration of equation (127), we

NN

~get a matrix equation

, Ki- = b, (129) 0

j+1

If we enforce the Kutta condition explicitly, i e., = -YN = 0, we get an

overdetermined system that can be solved using the least- squares method.

The idea is to find 7j so as to minimize 0

N+I N

£2E= Z (E Kj,- - bi,) (130)
tij=1

The minimum of (130) is 0

6£ N+i N
0 =2 ( -KiTj -bi)Kim (131)"t 0m i=1 3+1

4 •.
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or
N N+i N+1

Kjj j. -t biKi, 1,2 .. N(132)

- ~ Now, (132) represents a determined system. However, if we use the KuttaIA

condition in the form of eq. (76), (127) can be discretized as follows

N

E(!')+ K(N2)) 7,=sin(9, - a) (133)

Where the coefficients are

-,' BF+AG - K(N 2) (134)
2S

K! v/2) -B ±1 IF (AD + BE)G3 . (135)

and%

A = sin (O, - 9,) ; B = cos (O, - Oj)

C = (Xj~ _ X1)2 + (Yc' _-j)

D =(X, - xc,)cos Oj + (Y - yci)sin Oj

E (xc, - X.)sin Oj - (yc, - Y)cos Oj

1
F I nj ±I (L2 +±2L1 D)I

L 3)

7H =(xc, - X1 ) sin (9, - 20j) + (yc, - Y,) sin (O, - 20j)

For i =j the coefflicients become

K!1 (N) =-1 and K! (N 2 ) (136)
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The solution of the system (133) gives us the unknown circulation densities.

The tangential component of velocity can be computed as follows

VT = Cos (9, - oe) + Z(K~f1) + Kjf2) (137)
9 #=1

I''where the coefficients for i: jare

* 1 -T,)i 1 -AF - BG - K(T2)
2

1HF (BD - AE)G

Aand for i j t j

* TAT,) = _ _ _

'3 " 2

Then, the pressure coefficient can be computed as

C~i Tj(138)

% az *6-
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APPENDIX B

13 CURVED PANEL DISCRETIZATION

We use a base coordinate system for an element: Referring to fig. (47) the
coordinate system is oriented and positioned as shown.

a) or x coordinate is tangent to the curve; b) normal projections

of the x - axis of the ends of the curve S lie equal distance A to the right 0

and left (1 = 2A); c) 77- axis is normal to the curve; d) general point R

on the curve has coordinates ( , 7); and e) the distance between some

arbitrary point P(x, y) and R( , 7) is r = (x - )2 + (Y - 7)2

The boundary curve is defined as function of the - coordinate, i.e.,

77 = 77( ). In a neighborhood of the origin the curve and vorticity have

power series approximations

7 = ao + b 3 + ...... (139)

^- =(0) + Y0) + +(2) + ...... (140)

or as a function of panel curvature S
V 2 3

S +C (141)

ds = (1 + 2c 2 2 ) dg (142)

Factor c depends on panel curvature and it is obtained by three point curve

fitting using the averaged element slope

"'(tan O - tan Oi-. ) + -1'i''(tan 9j+1 - tan 0,)• ci = ' '+ (143)- ]

* -='....' (l-1 + 1j) + (lj + l,+i) (143)

.1

6 5
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Using eq. (143), a second order curved panel formulation can be written

N-1 12 ' 1 2 c' __)

31 [ 2 !,( - T' 3) (1 + 2cj2) -)jd~j] -y +
L.+..t2 2 31T,1a

N' -1 +!.L+2c
N-+ T~( + _ C..~3 ( +2 c2 )( jjd~] -y,+i

j7+1 2 i 3 .

ni V. (144)

Using the Kutta condition 7i = 7N, System (144) becomes

1fj;= RHSi (145)

where Ki, represents the left-hand side and RHS, the right-hand side of

system (144). The influence coefficients for normal velocity component can

be expressed as

Aj - _ + Ki2) (146)

1 ,N 1J (~+-+- )1+2 On d (147

1 2 c2  a
14N != - _2 7 3 13j- (148)

Where
9 0 (yj - Y,) sin 0, + (x(i) - X,) COS Oj (149)

Xj= X, + CCOS 0-_C3
2 sin03j

Yj= y3 + Csin0 -j CC2 COS 9

Coordinates Xj, 1'j are new control points obtained by parabolic curve ap-

proximation for each panel, and

%I Ki,=1 for' i=j
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A1=-1for i=j+1

The influence coefficient for tangential velocity component can be written

as

)- + J(i) (150) -

2 a
2+ 1 2c C 3)( 2C 2)(O0 O)jjd (151)

O0 , - Yj) cos Oi + (x(i) - X3 )sin (152)
( .l (X, - X,) 2 + (y,- Yj)

+ 1 2 C? 2)c( 0
KT2)= J_ ( + -+ I (1+ 1 )j-d (153)

and

i T  2 1 for i=j (154)
2 12

ICiK}T2) 2 Cj-1j-1 2 for i=j +1 (155)-2" + 2 + 12

i"U

*" 0

• N

t '.
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NACA 0012

ELIPTIC SCHEME xx + T1 )a = P (4,T0 PARABOLIC
4yy + nyy =_Q_(_) SCHEME

GRID SIZE ERROR ITER R co CPU CPU to

time (sec) time (sec)

27 x 20 0.0001 78 5 1.81 11.722 0.083

27 x 20 0.0001 71 4 1.81 10.708 0.088

27 x 20 0.0001 68 3 1.80 10.264 0.090

27 x 20 0.0001 57 4 1.82 8.649 0.090

61 x 28 0.0001 99 3 1.81 48.561 0.288

61 x 28 0.001 479 2 1.81 239.259 0.283

N,

TWO NACA 0012 AIRFOILS - FLAP ANGLE 250

69 x 20 0.0001 275 4 1.80 105.702 0.340

69 x 20 0.001 116 5 1.81 48.301 0.342

NACA 0012 ** PARABOLIC SCHEME ONLY (R = 3)

GRID SIZE NO OF GRID POINTS CPU time

61 x 28 1708 0.252

80 x 25 2000 0.288

80 x 40 3200 0.469

100 x 40 4000 0.571

120 x 80 9600 1.354

120 x 100 12000 1.686

Table 1 - Comparision of the parabolic and elliptic schemes
Y . .pqi
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* multi - block *differential
* interfering
* componenta adaptive

- loverlaping
- interfacing

Fig. 1 Discretization methods
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*transfinite interpolations

Fig. 2 Grid generation schemes
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ELLIPTIC (ITERATIVE)

. inner boundary

' ~~specifiedoue
outer boundary
specified

* HYPERBOLIC (NON ITERATIVE)0
inner boundary
specified - outer

boundary computed

0

PARABOLIC (NONITERATIVE)

S outer boundary
. specified

inner boundary
specified

*Fig. 3 Differential grid generation schemesI
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Fig. 6 Elliptic scheme:

Physical and Computational planes - Single body 
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Fig. 7 Elliptic scheme:

Physical and Computational planes - Multiple bodies



-- - -- -

87

40

0

Fig. 8 0-grid about an NACA 0012 airfoil generated by the
Poisson system (grid size 61 x 28, CPU time 48.56 1 sec)
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* Fig. 12 0-grid about two NACA 00 12 airfoils generated by the
Poisson system (flap angle 250, grid size 69 x 20,
CPU time 105.702 sec.)
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Fig. 14 Parabolic scheme:
a a- Physical plane; b - computational plane
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OUITER BOUNDARY
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rn-i F, j-1
A-i i-1 j4+1

* Fig. 15 Definition of parameters for approximation
of the model parabolic equations



94

B
A

B
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* Fig.22 H-grid about an NACA 0012 airfoil generated by the
* Parabolic scheme without orthogonality at the airfoil

surface
(grid size 41 x 20, CPU time 0. 126 sec.)
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Fig. 23 H-grid generated by the parabolic scheme
with strong clustering and orthogonality
at the airfoil surface

Fig. 24 C-grid about an NACA 0012 airfoil
generated by the parabolic scheme
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Fig.27 0-grid about two NACA 0012 airfoils generated by the
Parabolic scheme ( flap angle 00)
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Fig.30b Cascade grid - without the demand for nonsingularity
at the corner points
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Fig. 39 Cambered Joukovski aifoil



116

F1 ANGLE OF ATTACK 8. 0 DEC.
~ -- STREAV~ FUNCTION KAJETHOD

3. 0JO I- LINEAR VIORTEX KMETHOC

* 2. 00 -~

100

0. 00

-1 00 I

0. 00 0 25 0. 50 0. 75 1 00

* '<CHORD

Fig. 40 NACA 2412

SI



--0-- - - - - -

117

I FY 1 CT SOLLTION I
STIR FUN. PANEL SOLUTION

8. 0 61 POINTS
0 41 POINTS

* 0

2 0

0. 0

0. 0 0.2 0. 5 0. 7 10 12

/CHORD

Fig. 41 William's configuration with flap angle at 30'0
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